
Visa Checkout
Integration Guide
Effective: January 23, 2019

©© 2013-2019 Visa. All Rights Reserved. Version 19.01

Important Note on Copyright

This document is protected by copyright restricting its use, copying, distribution, and decompilation. No part
of this document may be reproduced in any form by any means without prior written authorization of Visa.

The trademarks, logos, trade names and service marks, whether registered or unregistered (collectively the
“Trademarks”) are Trademarks owned by Visa. All other trademarks not attributed to Visa are the property of
their respective owners.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES
ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN: THESE CHANGES WILL BE INCORPORATED IN
NEW EDITIONS OF THE PUBLICATION. VISA MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE
PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

NOTHING CONTAINED IN THIS DOCUMENT SHOULD BE INTERPRETED IN ANY WAY AS A GUARANTEE OR
WARRANTY OF ANY KIND BY VISA.

If you have technical questions or questions regarding a Visa service or capability, contact your Visa
representative.

January 23, 2019 i

Contents
Preface . vii

What’s New in this Version .vii

Chapter 1 Integration Overview . 1-1

Visa Checkout Integration Overview . 1-1

About the Visa Checkout Button and Lightbox 1-1

Visa Checkout Display Language and Locale Selection 1-3

Displaying the Total Amount for a Pay Button in the Lightbox 1-5

Market Requirements . 1-7

Payment Partner Reporting Requirements 1-8

About Tokenized Payment Instruments 1-8

Consumer Information Payload . 1-11

Integration Steps . 1-13

Integration Options . 1-14

Card-on-File Transactions. 1-16

About Visa Checkout Profiles . 1-18

User Interface Redress Prevention . 1-19

Visa’s Accessibility Support . 1-19

Fraud and Risk . 1-20

Chapter 2 Visa Checkout Assets and Placements. 2-1

General Visa Checkout Button Placement and Flow Requirements 2-1

Chapter 3 Visa Checkout JavaScript and Button 3-1

JavaScript Library — sdk.js . 3-1

Example: JavaScript Library — sdk.js . 3-1

Image Class v-button. 3-1

v-button Parameters . 3-2

Example: Rendering a Visa Checkout Button 3-5

Tell Me More Link . 3-6

Example: Tell Me More Link . 3-8

Defining onVisaCheckoutReady Function . 3-8

Defining V.init Event Handler . 3-9

Merchant Example . 3-10

Partner Hosted Merchant Example . 3-11

ii January 23, 2019

Contents Visa Checkout

Payment Request Properties . 3-11

Settings Properties. 3-16

Response to Payment Success Events . 3-29

Response Status . 3-30

Partial Shipping Address . 3-31

Response to Payment Cancelled Events . 3-32

Response to Error Events . 3-32

Example: Error Event Response . 3-32

User Data Prefill Event Handler . 3-33

Complete Visa Checkout Web Page HTML Example 3-34

Preselected Checkout Feature . 3-36

Chapter 4 Mobile App Support . 4-1

Summary of Mobile App Options . 4-1

Mobile App Examples . 4-1

iOS Web View Hybrid App . 4-1

Android Web View Hybrid App . 4-2

Optimizing the Checkout Flow for Mobile Browsers. 4-2

Enabling Third-Party Cookies for Hybrid Apps 4-3

Accepting Cookies in iOS Hybrid Apps 4-3

Accepting Cookies in Android Hybrid Apps 4-3

Chapter 5 Consumer Information . 5-1

About Consumer Information . 5-1

Consumer Information . 5-1

Payment Request . 5-3

User Data. 5-4

Payment Instrument Properties . 5-6

Address . 5-14

Risk Properties . 5-19

3–D Secure Authentication Data Fields 5-20

Wallet Info . 5-23

Partial Shipping Address . 5-24

Chapter 6 Get Payment Data. 6-1

Get Payment Data Summary . 6-1

Get Payment Data Request . 6-1

January 23, 2019 iii

Path and Endpoints . 6-1

Method . 6-2

Required Headers . 6-3

Query Parameters . 6-4

Get Payment Data Response . 6-5

Full Payment Information Before Decryption. 6-6

Get Payment Data Error Response . 6-8

Get Payment Data Errors . 6-9

Get Payment Data Examples. 6-10

Get Summary Payment Data Success Example—Merchant 6-10

Get Summary Payment Data Success Example—Partner 6-18

Get Full Payment Data Success Example. 6-26

Get Payment Data Error Response . 6-29

Chapter 7 Update Payment Info . 7-1

Update Payment Info Summary . 7-1

Event Types . 7-1

Card on File Events. 7-2

Promotions . 7-3

Update Payment Info Request . 7-3

Path and Endpoints . 7-3

Method . 7-3

Required Headers . 7-4

Query Parameters . 7-5

Update Payment Info Request Parameters 7-5

Update Payment Info Errors . 7-12

Update Payment Info Examples . 7-13

Update Multiple Info Structure Examples 7-13

Order Update Success Example . 7-14

Payment Update Success Example . 7-16

Update Payment Info Error Examples 7-17

Chapter 8 Update Payment Info Pixel Image 8-1

Update Payment Info Pixel Image Summary 8-1

Card on File Events. 8-2

Promotions . 8-2

Update Payment Info Pixel Image Request 8-2

iv January 23, 2019

Contents Visa Checkout

Path and Endpoints . 8-2

Update Payment Info Pixel Image Request Parameters 8-3

Update Payment Info Pixel Image Response 8-6

Update Payment Data Info Pixel Image Error Messages 8-6

Update Payment Info Request Inside an Image Tag 8-6

Update Payment Info Request . 8-6

Update Payment Info Error Response . 8-7

Appendix A Decrypting Consumer Information A-1

Decrypting Consumer Information Introduction A-1

Consumer Information Decryption Algorithm A-1

Consumer Information Decryption Examples A-2

Java Decryption Example . A-2

C# Decryption Example. A-3

Node.js Decryption Example . A-4

PHP Decryption Example . A-4

Python Decryption Example . A-5

Ruby Decryption Example. A-6

Appendix B HMAC-SHA256–Bit Hashing . B-1

About the HMAC-SHA256–Bit Hashing Algorithm B-1

HMAC-SHA256 Hash Algorithm in PHP Example B-1

HMAC-SHA256 Hash Algorithm in Python Example. B-2

HMAC-SHA256 Hash Algorithm in Java Example B-2

HMAC-SHA256 Hash Algorithm in Ruby Example B-3

HMAC-SHA256 Hash Algorithm in C# Example B-3

Appendix C Clickjacking Prevention . C-1

Clickjacking Prevention Steps . C-1

Checking for Hidden Layers . C-1

Using the X-Options Header . C-1

Testing Your Clickjacking Prevention Implementation C-2

Example Server-Side Clickjacking Prevention Implementation C-2

Java Servlet . C-2

Tomcat Configuration . C-3

Appendix D AVS and CVV Responses . D-1

AVS Codes . D-1

January 23, 2019 v

CVV Codes . D-3

Appendix E Branding Requirements . E-1

Visa Checkout Buttons . E-1

Visa Checkout Dynamic Acceptance Marks E-1

vi January 23, 2019

Contents Visa Checkout

January 23, 2019 vii

Preface
What’s New in this Version
If configured by Visa Checkout, you can receive a 3-digit DTVV cryptogram in the cryptogram
field of the consumer information payload’s cryptogramInfo structure, rather than a TAVV
token. The DTVV cryptogram is valid for 24 hours. Your processor will specify how to use this
value.

viii January 23, 2019

Contents Visa Checkout

January 23, 2019 1-1

Integration Overview 1
Visa Checkout Integration Overview

Visa Checkout is a digital payment service in which consumers can store card information for
Visa, Mastercard, Discover, and American Express cards. Visa Checkout provides quick
integration for merchants that want to accept payments from these card holders. Visa
Checkout leverages your existing environment because most websites in which Visa Checkout
will be used already exist. This means you most likely will add Visa Checkout buttons to your
existing website pages and implement business and event logic using programming
languages, tools, and techniques in the same way you currently do. For this reason, Visa
Checkout is quite flexible and imposes very few requirements for use.

Related Content
About the Visa Checkout Button and Lightbox

Visa Checkout Display Language and Locale Selection

Displaying the Total Amount for a Pay Button in the Lightbox

Market Requirements

Payment Partner Reporting Requirements

About Tokenized Payment Instruments

Consumer Information Payload

Integration Steps

Integration Options

Card-on-File Transactions

About Visa Checkout Profiles

User Interface Redress Prevention

Visa’s Accessibility Support

Fraud and Risk

About the Visa Checkout Button and Lightbox

Checking out and paying through Visa Checkout begins by proving the consumer with access
to Visa Checkout from your site. This is accomplished by inserting a Visa Checkout button,
which could be a generic version or one that shows an image of the credit card brand being
proposed to the consumer as shown below:

•

•

1-2 January 23, 2019

Integration Overview Visa Checkout

Important
You must follow the Visa Checkout user interface guidelines.. These guidelines include
information about Visa Checkout buttons, acceptance marks, and other visual assets. They also
include information about integrating Visa Checkout with your checkout flow.

Regardless of how the consumer arrives at a page with a Visa Checkout button, when a
consumer clicks a Visa Checkout button, one of two options appears depending on whether
you use the default lightbox checkout flow or you are enabled to use the interactive checkout
button flow. Both flows allow the consumer sign in, set or change billing and shipping
information if desired, and make a payment.

Related Content
Visa Checkout Integration Overview (Parent Topic)

Default Checkout Flow

Recommended Browser Versions

Guidelines for Rendering Buttons

Z-Index Stacking

Default Checkout Flow

In the default checkout flow, the Visa Checkout lightbox appears from which the consumer can
either sign up to create an account or sign in:

Related Content
About the Visa Checkout Button and Lightbox (Parent Topic)

Recommended Browser Versions

The following browsers are recommended for use by Visa Checkout:

• Internet Explorer, version 11 or later

Note
Do not use the compatibility setting; specifically, do not use it to specify a version less than IE11;
for example, do not specify x-ua-compatible=IE, where is less than 11, in your pages.

• Firefox, current version to 10 versions prior
• Chrome, current version to 10 versions prior, excepting beta versions

January 23, 2019 1-3

Visa Checkout Guidelines for Rendering Buttons

• Safari, version S6 or later
• iOS, version 8 or later
• Android, version 4.4.2 or later

Other browsers may be acceptable; however, the HTML pages that contain a Visa Checkout
button must be compatible with HTML 4.01 or higher, which includes XHTML 1.0 and above.
Typically, you specify the HTML version in the DOCTYPE declaration for version 4.x as follows:
<!DOCTYPE html …>. HTML 5 does not require explicit version numbers.

Important
Visa Checkout advises consumers to upgrade to the latest version of their browser to take
advantage of the latest security features that the browser offers. The browser must use
Transport Layer Security (TLS) 1.2 or higher.

Related Content
About the Visa Checkout Button and Lightbox (Parent Topic)

Guidelines for Rendering Buttons

• The Visa Checkout button must be hosted by Visa.
• If any of the HTML tags that encloses the Visa Checkout button image restricts the width

and height of the button, ensure that the button is rendered in its actual size.
• Do not display the Visa Checkout button as a background image.

Related Content
About the Visa Checkout Button and Lightbox (Parent Topic)

Z-Index Stacking

The Visa Checkout lightbox uses a z-index of 999999 to ensure it is displayed properly.
Pages that host Visa Checkout buttons must use a z-index below 999999 to ensure that the
lightbox appears on top when the consumer clicks the Visa Checkout button.

Related Content
About the Visa Checkout Button and Lightbox (Parent Topic)

Visa Checkout Display Language and Locale Selection

Visa Checkout determines the choice of language to display based on locale, which is a
combination of language and country that Visa Checkout supports.

The following locales are supported since Version 2.0 unless noted otherwise:

• es_AR - Argentina, Spanish (Since 3.5; en_AR 2.9-3.4)
• en_AU - Australia, English
• pt_BR - Brazil, Portuguese (Since 3.5; en_BR 2.9-3.4)
• en_CA - Canada, English (Default for Canada)
• fr_CA - Canada, French
• en_CN - China, English (Since 2.9)

1-4 January 23, 2019

Integration Overview Visa Checkout

• zh_CN - China, Simplified Chinese (Since 3.5)

Note
For display purposes only; input is in English.

• es_CL - Chile, Spanish (Since 3.5; en_CL 2.9-3.4)
• es_CO - Colombia, Spanish (Since 3.5; es_CO 2.9-3.4)
• fr_FR - France, French (Since 4.3)
• zh_HK - Hong Kong, Chinese (Since 3.5)

Note
For display purposes only; input is in English.

• en_HK - Hong Kong, English (Default for Hong Kong since 2.9)
• en_IN - India (since 4.6)
• en_IE - Ireland, English (Since 4.3)
• en_KW - Kuwait, English (Since 5.1)
• en_MY - Malaysia, English (Since 2.9)
• es_MX - Mexico, Spanish (Since 3.5; en_MX 2.9-3.4)
• en_NZ - New Zealand English (Since 2.9)
• es_PE - Peru, Spanish (Since 3.5; en_PE 2.9-3.4)
• pl_PL - Poland, Polish (Since 4.3)
• en_QA - Qatar, English (Since 5.1)
• en_SA - Saudi Arabia, English (Since 5.1)
• en_SG - Singapore, English
• en_ZA - South Africa, English (Since 2.9)
• es_ES - Spain, Spanish (Since 4.3)
• en_UA - Ukraine, English (Since 5.1)
• uk_UA - Ukraine, Ukranian (Default for Ukraine since 5.1)

Note
For display purposes only; input is in English. Not all regions are supported.

• en_AE - United Arab Emirates, English (Since 2.9)
• en_GB - United Kingdom, English (Since 4.3)
• en_US - United States, English

This locale is one part of the algorithm that Visa Checkout uses to determine the language in
which to display lightbox content. You can set a locale on each page that invokes the lightbox
using the locale parameter, or set the locale in the merchant's profile, in which case, it
applies to any page that displays the lightbox. The value of the locale parameter overrides
any value in the merchant's profile for a page.

Related Content
Visa Checkout Integration Overview (Parent Topic)

Language Selection Algorithm

January 23, 2019 1-5

Visa Checkout Language Selection Algorithm

Language Selection Algorithm

The following algorithm determines the language in which the lightbox is displayed within a
browser:

Note
The rules for country selection take precedence over the rules for language selection to
determine the locale, and thus, the display language.

• The country is determined by the consumer preference if changed during sign in;
otherwise, it is the first item in the following hierarchy that exists or is set:

1. Visa Checkout country_preference cookie in the consumer’s browser
2. Valid country in the countryCode setting in V.init
3. Country specified in a valid locale specified in the locale setting in V.init
4. Browser’s locale
If none of the above items can determine the country, Visa Checkout defaults to US.
Regardless of the items listed above, after a consumer signs in, the consumer’s country of
registration becomes the country.

• The locale, which is used for rendering the language is determined by the consumer
preference if changed during sign in; otherwise, it is the first item in the following hierarchy
that exists or is set:

1. Visa Checkout locale cookie in the consumer’s browser
2. Valid locale setting in V.init
3. Default locale for the country determined from the country items above, if the resulting

locale is valid for Visa Checkout
4. Locale set by the consumer’s browser / navigator
If Visa Checkout does not support the locale, the locale becomes the default locale for the
country; for example, if the locale is fr_FR and the country is US, the locale becomes en_
US. If the locale cannot be determined by this algorithm, Visa Checkout defaults to en_US.

Related Content
Visa Checkout Display Language and Locale Selection (Parent Topic)

Displaying the Total Amount for a Pay Button in the Lightbox

You can specify the presentation of the total amount that is associated with a Pay button in the
lightbox by using the currencyFormat setting of the V.init function. This setting affects
only the presentation; it does not change the actual amount. By default, the lightbox displays a
currency amount associated with the Pay button in the following format: xxx
999,999,999.99 where xxx is the ISO 4217 standard alpha-3 currency code for the currency
being used, suppressing leading zeros (0) and truncating additional precision in the display.
However, the value remains unchanged.

Note
The currencyCode field in the paymentRequest of the V.init function determines the
currency being used.

When you specify an invalid currency format, the amount is automatically displayed in the
default format.

1-6 January 23, 2019

Integration Overview Visa Checkout

You can also set the currency format at the profile level. The currencyFormat field that
passes in the paymentRequest of the V.init function takes precedence over the currency
format value that is included in the profile. If the currency format is not specified at the profile
level or in the V.init structure, then the total amount is automatically displayed in the
default format.

You can create the currencyFormat string by applying the following rules:

• Specify the digits to display before and after the decimal separator by using the pound or
hash mark (#) to indicate the presence of a digit. You must specify 9 digits to the left, a
decimal separator, and 0 to 4 digits to the right of the decimal separator, such as
#########.## Leading zeros (0) are always suppressed and additional precision is
truncated in the display.

• Specify one of the following separator characters for the decimal separator, i.e. the decimal
place, such as a decimal point or comma:

– period (.)
– comma (,)
– semicolon (;)
– colon (:)
– space ()

• If the decimal separator is not followed by another digit, i.e. when specifying 0 digits of
precision, you must specify a period (.) following the right-most digit. The period will not
be displayed; for example, a value of 1.00 using a format of #########. results in 1
being displayed.

• Optionally, specify a grouping separator character to separate values to the left of the
decimal separator, such as thousands with ###,###,###.## or ###.###.###,###. The
grouping separator character is one of the separator characters listed for the decimal place.
You cannot specify a leading or tailing grouping separator.

• Optionally, to display the currency being used before or after the first or last digit, specify
currencyCode to display the ISO 4217 standard alpha-3 code for the currency or
currencyCodeSymbol to display the associated symbol; for example, currencyCode
###,###,###.## or ###,###,###.## currencyCodeSymbol.

• The placement of the symbol or code next to the decimal formatting specifies whether a
space appears before or after the number; for example, currencyCodeSymbol###,###,
###.## for a value of 1.00 results in $1.00, and a format of currencyCode ###,###,
###.## results in USD 1.00 if the currencyCode field in the paymentRequest of the
V.init function is USD. Specifying more than a single space between the symbol or code
and the number is invalid and results in the default currency format being used.

Related Content
Visa Checkout Integration Overview (Parent Topic)

Examples

January 23, 2019 1-7

Visa Checkout Examples

Examples

currencyFormat String
Example of total 123456789.123 in United
States dollars (USD)

currencyCode
###,###,###.##

USD 123,456,789.12

currencyCode
###,###,###.##

USD123.456.789,123

currencyCodeSymbol
###,###,###.

$ 123,456,789

###,###,###.####
currencyCode

123,456,789.1230 USD

##,##,##,###.####
currencyCodeSymbol

12,34,56,789.1230 $

currencyCodeSymbol
###,###,###.###
currencyCode

$ 123,456,789.123 USD

######### #
currencyCode

123456789 1USD

currencyCodeSymbol
#########.

$ 123456789

Related Content
Displaying the Total Amount for a Pay Button in the Lightbox (Parent Topic)

Market Requirements

Visa Checkout supports billing and shipping for the following markets:

• Argentina
• Australia
• Brazil
• Canada
• China
• Chile
• Colombia
• France
• Hong Kong
• India
• Ireland

1-8 January 23, 2019

Integration Overview Visa Checkout

• Kuwait
• Malaysia
• Mexico
• New Zealand
• Peru
• Poland
• Qatar
• Saudi Arabia
• Singapore
• South Africa
• Spain
• Ukraine
• United Arab Emirates
• United Kingdom
• United States

Your integration must enable billing and shipping to consumers in each of these markets
unless the requirement has explicitly been waived by Visa Checkout. Specifically,

1. Visa Checkout must work on merchant site/s the same way the merchant site/s accepts
cards and fulfills orders paid with cards; including billingmarkets, shippingmarkets, and
displaying the Visa Checkout button for every market for which the merchant supports
billing.

2. Upon enablement of a new market and communication to merchants via release notes,
merchants must update the integration to ensure that Visa Checkout continues working on
merchant sites the same way for the new market; however, if the merchant does not
support billing or shipping to the new market, the merchant is not required to support
billing or shipping just for Visa Checkout.

Related Content
Visa Checkout Integration Overview (Parent Topic)

Payment Partner Reporting Requirements

You must contact your payment partner (processor, partner, or acquirer) to inform them that
you are using Visa Checkout and to determine whether there are any specific requirements
from them for processing transactions with data provided by Visa Checkout, such as including
an indicator identifying that the data came from Visa Checkout. For more information, please
contact your Visa Checkout representative.

Related Content
Visa Checkout Integration Overview (Parent Topic)

About Tokenized Payment Instruments

Visa Checkout supports tokenized payment instruments, which are presented to consumers as
digital account numbers. Conceptually, a token is a replacement for the consumer's account

January 23, 2019 1-9

Visa Checkout User Experience and Error Handling for Tokens

number as it appears on a card. Tokens are considered more secure than account numbers,
which are easier to compromise and more difficult to deal with when a card associated with
just an account number is lost or stolen. Tokens may reduce the risk to consumers, and to you,
that the financial information associated with an account can be used for fraudulent purposes
if an account number is compromised. As a result, card issuers are increasingly using tokens to
authorize transactions.

To accept tokenized payment instruments:

1. Ensure that your processor can accept tokenized payment instruments.
2. Integrate to meet your processor's requirements for providing token information when

authorizing a transaction. These requirements include the kind of cryptogram to use, which
is one of the following:

• 3-digit non-encoded DTVV cryptogram
• 20-byte Base64-encoded binary value as a TAVV cryptogram required in VisaNet Field

126.9

Note
You also may need to support PANs if the payment instrument does not have a token
replacement.

With tokenization, you receive consumer information payloads that contain token information
if available. If the issuer provides a token for the consumer's payment instrument, you always
receive the token information and do not receive account information.

If you need to know whether the payment instrument in the payload is a token or an account
number before you decrypt the payload, you can determine whether it is a token or PAN by
examining the paymentMethodType field in the payment.success event, which Visa
Checkout returns to the frontend, or by examining the same field in the response to the Get
Payment Data API. The field contains either TOKEN or PAN, depending on the type of payment
instrument. The paymentMethodType field is also present in the payload itself.

Related Content
Visa Checkout Integration Overview (Parent Topic)

User Experience and Error Handling for Tokens

Tokenized Card on File and Multiple Authorization Considerations

User Experience and Error Handling for Tokens

Because a consumer need not be aware that a tokenized payment instrument is being used
when they "choose a card," you must

• Advise the consumer to choose another card in the event of an error, regardless of whether
an issue with a token-enabled payment instrument caused the error.

• Display the last 4 digits of the account number instead of the last 4 digits of the token. You
can obtain the last 4 digits of the account number from the lastFourDigits field of the
paymentInstrument structure in the consumer information payload.

Note
If you must display a date associated with the card, use 12/99 or 12/9999, because the card
expiration date is not provided for tokenized payment instruments.

• Refer to tokens using the name Digital Account Number in cases where you must refer to
a token; for example, if you display both the last 4 digits of the card as well as the last 4
digits of the token

1-10 January 23, 2019

Integration Overview Visa Checkout

• Not display the token expiration date. If it is necessary to display the token expiration date,
it must be done in such a way that the consumer does not become confused by differing
dates; for example, display both the last 4 digits of the token and the token expiration date
under Digital Account Number and separate token information from other account
information.

Tokens cannot be auto-filled/key-entered in the browser. You should work with your Visa
Checkout representative to develop consumer-facing messaging about tokens, as needed.

Related Content
About Tokenized Payment Instruments (Parent Topic)

Tokenized Card on File and Multiple Authorization Considerations

You can use tokens for Card on File type transactions. The merchant stores the call ID for the
transaction and makes a Get Payment Data API request to obtain a consumer’s information
payload which includes the token information.

Note
Visa Checkout supports tokenized payments instruments for Visa cards only.

The Get Payment Data response includes a new cryptogram for the token, which can be used
for a subsequent authorization when transactions require multiple authorizations. Because the
Get Payment Data API response returns a new cryptogram, you should make a Get Payment
Data API request to refresh the cryptogram prior to using the token each time the token is
needed for a subsequent authorization.

Note
If you store the call ID, do not request an expiration for the call ID.

The following diagram shows how multiple authorizations work with tokens:

The token information appears in the paymentInstrument structure of the payload that Visa
Checkout returns. It includes the tokenInfo and cryptogramInfo elements.

Consumers do not need to be aware a token has replaced their credit card number. Also,
tokens cannot be entered into a browser or autofilled.

The following steps are shown:

1. Call Get Payment Data to obtain the token information.

January 23, 2019 1-11

Visa Checkout Consumer Information Payload

2. The response includes a new cryptogram, which you must use for a subsequent
authorization.

3. Pass the token information, including the new cryptogram to your processor as part of your
authorization request.

Note
You follow your processor's protocol for requesting an authorization. Your processor
typically handles VisaNet operations.

4. The processor returns the status of the authorization using their protocol. If the
authorization fails, you must contact the consumer to obtain another payment instrument.

5. You can repeat these steps for additional authorization requests. You cannot skip any of
these steps because each Get Payment Data response includes a new cryptogram, which
must be passed with the token to your processor.

Related Content
About Tokenized Payment Instruments (Parent Topic)

Consumer Information Payload

On successful completion of a payment request, Visa Checkout returns a payload of consumer
information, depending on how your account has been configured by Visa Checkout or your
Visa Checkout partner when your account was created. The consumer information contains
information about the following:

• Consumer, such as the consumer's name and email address
• Payment request, such as the payment amount and currency, shipping and handling

charges, discounts, promotion codes, and such
• Payment instrument, such as a PAN or token and related information, billing address, card

art, and such
• Risk information, such as AVS and CVV responses
• Shipping address if requested
• Verified by Visa authentication information, if configured by Visa Checkout

Important
The payload can contain personally identifiable information (PII). You must follow PCI
compliance guidelines when dealing with PII.

How the account was created and the requested data level determine whether the payload
contains the consumer's account number (PAN) or token, which represents the account
number in tokenized payment instruments. Specifically, if you have been enabled to receive
PAN access, which includes token access, you receive the full encrypted consumer payload;
otherwise, you receive encrypted summary information, meaning no PAN or token plus
associated cryptogram, regardless of whether you requested full or summary information.

The consumer information payload is always encrypted when returned to your website,
regardless of whether it contains full or summary information. When requested by a Visa
Checkout API, full information is always encrypted; however, summary information is not
encrypted.

1-12 January 23, 2019

Integration Overview Visa Checkout

Note
You can choose not to receive the payload as part of a successful payment request; however,
you must then call a Visa Checkout API when you are ready to obtain it. When you enable the
consumer information payload to be returned directly, which is also the default, an API-based
integration may not be necessary.

Related Content
Visa Checkout Integration Overview (Parent Topic)

Token Available—tokenInfo Structure Returned in Payload

Account Number (PAN) Available—No tokenInfo Structure Returned in Payload

Token Available—tokenInfo Structure Returned in Payload

Token information appears in the paymentInstrument structure of the payload. It consists
of 2 structures, tokenInfo and cryptogramInfo. The contents of the tokenInfo structure
depend on whether PAN access, which also applies to tokens, has been granted and whether
full or summary data has been requested.

Fields returned when PAN access is
enabled and full data requested

Fields returned when PAN access is not enabled
or summary data requested

Payment method type (TOKEN) Payload contains a tokenInfo structure

Token –

Token range Token range

Token, last 4 digits Token, last 4 digits

Token expiration date Token expiration date

Cryptogram –

ECI –

Payment Account Reference (PAR) Payment Account Reference (PAR)

Note
The last four digits of the underlying PAN is also available for display purposes.

Related Content
Consumer Information Payload (Parent Topic)

January 23, 2019 1-13

Visa Checkout Account Number (PAN) Available—No tokenInfo Structure Returned in
Payload

Account Number (PAN) Available—No tokenInfo Structure Returned in
Payload

Fields returned when PAN access is
enabled and full data requested

Fields returned when PAN access is not enabled
or summary data requested

Payment method type (PAN) Payment method type (PAN)

Account number (PAN) –

Last four digits Last four digits

Card BIN, 6 digits Card BIN, 6 digits

Card expiration Date, Month and Year Card Expiration Date, Month and Year

Related Content
Consumer Information Payload (Parent Topic)

Integration Steps

At a high level, your integration consists of modifying your checkout and payment pages to:

1. Place the Visa Checkout button on your page and provide JavaScript to enable it:

• Load the Visa Checkout JavaScript library, sdk.js.
• Initialize the library properties related to the lightbox appearance and the payment

request.
• Provide event handlers that respond when the lightbox closes, including a payment

success handler to set up payment processing using your own business logic.
2. Decrypt the payload returned with a payment success event and process the payment
3. Update payment information in Visa Checkout after the payment has been processed

All integrations require you to perform Step 1. Visa Checkout provides you with the button to
use; however, there is considerable flexibility for its use. See Getting Started With Visa
Checkout for button placement and usage information. You must implement 1 JavaScript
function to specify library properties and implement handlers for lightbox events.

In Step 2, a payment success event returns encrypted consumer payment information, which
includes card verification, authentication, and risk information. The account number (PAN) can
be returned by agreement with Visa Checkout. Typically, you use your existing business logic
to process the payment request. Whether you need to decrypt or use this information depends
on your business logic and who performs it.

Note
In addition to a payment success event, you must also handle

• A payment cancellation event, which indicates that the consumer closed the lightbox before
confirming the payment request.

• A payment error event, which indicates that an error occurred during the operation of the
lightbox, which in most cases indicates an issue with the payment request or initialization of
the lightbox.

1-14 January 23, 2019

Integration Overview Visa Checkout

How you update payment information in Visa Checkout (Step 3) depends on your existing
business logic, current capabilities and security requirements. In some cases, requirements may
be imposed by your processor or an e commerce partner, which is someone you might choose
to handle Visa Checkout transactions on your behalf. Visa Checkout provides several
integration options to meet your requirements, which are described in Updating Payment
information in Visa Checkout.

Related Content
Visa Checkout Integration Overview (Parent Topic)

Integration Options

Visa Checkout provides several options to manage consumer payment information that is
returned by a payment event. It automatically updates Visa Checkout as a result of having
processed a consumer’s payment. You can manage these tasks by:

• Taking action from your web page or front-end server
• Calling a Visa Checkout API from either a front-end or back-end server.
• Passing the ID that is associated with the Visa Checkout payment request, which is

represented as a call ID in Visa Checkout terminology, to your server or to a processor or an
e-commerce partner for payment processing

Note
You can pass a call ID to a server as a convenience for remote process communication.

These choices are not mutually exclusive; for example, you can process consumer payment
information with your front-end server and update payment information in Visa Checkout
another way.

The following illustration demonstrates one way a merchant can integrate Visa Checkout:

Related Content
Visa Checkout Integration Overview (Parent Topic)

Responding to Payment Events

Updating Payment Information in Visa Checkout

Visa Checkout API Summary

January 23, 2019 1-15

Visa Checkout Responding to Payment Events

Responding to Payment Events

A payment event occurs when the consumer completes the payment request, the consumer
cancels the request, or an error occurs while the lightbox is open. If the payment event
indicates success, consumer information is available to complete the payment, What you do
with the payment information depends on what information you need and how you complete
the payment. The consumer payment information is encrypted in the payload returned with
the event.

Note
YOU ARE RESPONSIBLE FOR THE SECURITY OF THE INFORMATION BEING DECRYPTED. NEVER
DECRYPT THE PAYLOAD DIRECTLY IN YOUR WEB PAGE.

The transaction's call ID is provided along with the event. You have three choices for handling
the event:

• Pass the call ID to your server for payment processing or to the entity that will process the
payment for you; in which case, the call ID can be used with the Get Payment Data API to
obtain the consumer payment information.

• Pass the encrypted payload to your server for payment processing or to the entity that will
process the payment for you.

• Call a Visa Checkout API, Get Payment Data, to obtain the consumer payment information
from the server you use to handle payment processing, This is what an entity that processes
payments on your behalf must do also.

Related Content
Integration Options (Parent Topic)

Updating Payment Information in Visa Checkout

After the payment has been processed, you must update Visa Checkout with the information.
This might occur in real time, immediately after the lightbox closes, or could happen later. You
may take the action yourself or it might be handled on your behalf by a payment processor or
an e-commerce partner. The following integration options are available, depending on your
configuration:

• Update Visa Checkout payment information from your web page by passing parameters
when the 1-pixel image provided by Visa Checkout is loaded.

• Pass the call ID to your server, or to the entity that will take action to on your behalf. In this
case, the call ID can be used with the Update Payment Info API to update Visa Checkout
payment information.

• Call the Visa Checkout API, Update Payment Info, to update payment information.

Related Content
Integration Options (Parent Topic)

Visa Checkout API Summary

The Visa Checkout API consists of REST-style messages, whose request and response pairs are
transported using the HTTPS protocol. Many programming languages provide HTTPS
interfaces, or you can send requests and receive responses as text; of course, there are headers
and encryption involved. Visa Checkout does not dictate the use of any particular
programming language to use its APIs.

1-16 January 23, 2019

Integration Overview Visa Checkout

Note
For maximum compatibility with Visa Checkout services, use Get Payment Data and Update
Payment Info APIs.

If you choose to use Visa Checkout APIs, you must support DNS name resolution. A list of
static IP addresses cannot be provided.

The following APIs are available to all merchants:

Field Description

payment/data/{callId} GET obtains consumer payment information
associated with the payment request (callId). It
provides the same information as though you used
the Visa Checkout JavaScript library.

payment/data/{callId} PUT updates the status of the transaction and the
amounts associated with the payment request
(callId) specified in the Visa Checkout library
initialization. It is an alternative to using the Update
Payment Information pixel image on your web
pages.

Related Content
Integration Options (Parent Topic)

Card-on-File Transactions

In Visa Checkout, a card-on-file transaction is one in which the merchant initiates a transaction
using previously collected card information. You must have permission from Visa Checkout to
create card-on-file transactions.

A Cardholder-initiated Transaction (CIT) is any transaction where the cardholder actively
participates in the transaction. This transaction can be at a terminal in a store, through a
checkout experience online, or with a stored payment credential that the cardholder has
previously consented to store with the merchant.

A Merchant Initiated Transaction (MIT), also known as a card-on-file transaction, is any
transaction that relates to a previous cardholder-initiated transaction but is conducted without
the active participation of the cardholder. The MIT transaction uses a stored credential and
represents the cardholder agreement for the merchant to initiate one or more future
transactions over a period for a single purchase of goods or services.

Merchants commonly perform MITs to perform a:

• Transaction as a follow-up to a cardholder-initiated transaction
• Pre-agreed standing instruction from the cardholder for the provision of goods or services

Examples of MITs include a:

• Hotel charge for mini-bar expenses tallied after the guest has checked out and closed the
folio

• Subsequent recurring payment for a magazine subscription

You typically confirm all transactions by calling the Update Payment Info API.

January 23, 2019 1-17

Visa Checkout Automatic Updates to Card-on File in Visa Account Updater

When a consumer checks out using the lightbox during the initial transaction, a call ID is
returned with the consumer information payload. For the initial transaction, use the initial call
ID and specify Confirm for the event type. For subsequent card-on-file transactions, the
consumer does not invoke the lightbox. You use the same call ID and specify Confirm_COF
for the event type.

Note
If you want to place a card-on-file without the consumer making a purchase, use Create for
the event type.

Merchants who save the callId on file and invoke the Get Payment Data API, receive the
latest PAN updates that the Visa Account Updater (VAU) has completed.

Related Content
Visa Checkout Integration Overview (Parent Topic)

Automatic Updates to Card-on File in Visa Account Updater

Automatic Updates to Card-on File in Visa Account Updater

Visa Account Updater (VAU) is a service that is designed to address the requirements of
recurring payments and episodic transactions. It enables the secure exchange of updated
payment account information among participating issuers, acquirers, and qualified account-
on-file merchants.

VAU supports account renewal or card replacement; account upgrades or downgrades;
portfolio acquisitions and/or mergers; lost/stolen cards; other account closures; and
MasterCard-to-Visa conversions. Visa Checkout uses VAU update information to ensure that a
user’s card information is up to date and that point-of-sale disruptions due to stale account
information are minimized.

The VAU update payment account information is now available with Visa Checkout. Issuers
who receive standard VAU reports can view VISACHECKOUT. Visa Checkout starts processing
additional VAU data for Closed Account and Please Call update types. As existing backlogs
are cleared, issuers may notice a short-term increase in the number of cards that have been
deleted from Visa Checkout.

When the card issuer is enrolled in Visa Account Updater (VAU) process, the process can
update the following information in Visa Checkout:

• Expiration date, when the issuer provides a new expiration date; typically, when the card
expires

• Account number, when the issuer provides a replacement account number for a number
that is no longer valid

• Closed Account type
• Please Call update type

All other information associated with the card remains unchanged as a result of this process,
which runs daily.

Note
The consumers of a card must update the card expiration date or account number themselves if
the card issuer is not enrolled in the VAU process or does not update card information on a
timely basis.

Related Content
Card-on-File Transactions (Parent Topic)

1-18 January 23, 2019

Integration Overview Visa Checkout

About Visa Checkout Profiles

All merchants should have a default Visa Checkout profile established that specifies the
lightbox settings your consumers will see, such as which cards are accepted, which billing
countries are accepted (which in turn, affects currencies), which countries shipping is accepted,
and a custom-tailoring of the lightbox display. When you log into the Visa Checkout Developer
Center, you can select Profile from the navigation on the left and complete the following
fields:

Note
If you have an e-commerce partner, your partner may provide a profile for you to use. Also, in
some situations, your e-commerce partner may provide an alternative to using the Visa
Developer Center, in which case, you may not be able to log into the Developer Center. In those
situations, you should follow your e-commerce partner's instructions.

https://developer.visa.com
https://developer.visa.com

January 23, 2019 1-19

Visa Checkout User Interface Redress Prevention

Visa Checkout will use the settings in the default profile unless you either:

• Specify a value for a setting using the JavaScript SDK. These are V.init settings.
• Specify another profile to use, which is specified in the externalProfileId setting in V.

init.

The order in which Visa Checkout selects values for V.init settings is as follows:

1. The value specified in V.init
2. The value specified in the selected (externalProfileId) profile
3. The value specified in the default profile
4. The default Visa Checkout value, which is the default V.init value, assuming no profile

options have been set

Related Content
Visa Checkout Integration Overview (Parent Topic)

User Interface Redress Prevention

It is possible for malicious code to monitor consumers’ keystrokes in an attempt to steal
confidential information. For example, when consumers believe they are selecting legitimate
links on an infected web page, they are actually selecting a transparent layer over the links that
relays information to outside unauthorized sources; it also applies to buttons and other UI
controls. This practice is referred to as clickjacking. You must ensure that each page containing
a Visa Checkout button has adequate anti-clickjacking preventions in place.

To prevent clickjacking, which could occur if malicious code is hidden beneath legitimate
buttons or other clickable content on your web page, you must:

• Provide anti-clickjacking code, which is typically JavaScript in the header of each page that
hosts a Visa Checkout button, to ensure that the associated DOM document for the page
has no child pages in which malicious code could reside.

• Provide headers on your server to prevent your page from being loaded from another
domain. For example, implement X-FRAME-OPTIONS DENY or X-FRAME-OPTIONS
SAMEORIGIN filtering for headers on your server to handle this requirement and provide
Content-Security-Policy frame ancestors for browsers that support them.

Important
You must implement both measures (code and headers) to help ensure that pages cannot be
loaded as an iFrame of some other page.

Related Content
Visa Checkout Integration Overview (Parent Topic)

Visa’s Accessibility Support

Visa has a robust process for coding to and validating conformance to WCAG 2.0 AA (the
specification developed by W3C). For each project that includes accessibility in their
requirements, Visa’s accessibility team (within Visa User Experience) holds an accessibility
kickoff/introductory meeting for involved staff to review the standards and Visa’s process. Staff
then take a 90–minute online training class that trains them in accessibility, WCAG 2.0, and how
to use Visa’s Global Accessibility Requirements (VGAR). The VGAR is a searchable web portal
containing a set of (currently) 120 specific requirements that Visa projects must follow to meet
WCAG 2.0 (meeting the VGAR means a project meets WCAG 2.0 AA) and is hosted inside Visa’s

1-20 January 23, 2019

Integration Overview Visa Checkout

network. The VGAR also includes a re-sort of the requirements and specific test cases for each
project's QA staff, along with downloadable tracking tools, links to all necessary testing tools,
and how-to videos for every tool and test case. Throughout the process if Development or QA
has any questions, they can reach out to Visa a11y (accessibility) for consulting. Visa is
committed to working with our merchants and partners to satisfy their accessibility compliance
needs.

Related Content
Visa Checkout Integration Overview (Parent Topic)

Fraud and Risk

Related Content
Visa Checkout Integration Overview (Parent Topic)

Fraud Checks

Declines

Card Security Code Usage

Verified by Visa (3–D Secure) Transactions

Fraud Checks

Visa Checkout uses a combination of proprietary and third-party technologies to implement
fraud checks during the consumer checkout experience in Visa Checkout. These checks provide
account validations on all Visa Checkout accounts when:

• The account is added or accessed
• A consumer logs in to Visa Checkout
• A card is associated with the account, a card is updated, or used in a transaction
• When a consumer makes changes to the account

Examples of fraud checks include device and IP data checks, velocity, card and account
verification, enrollment attributes, Visa Checkout transaction history, and other checks.
Specifically, for every card added to a Visa Checkout account, regardless of card brand, Visa
Checkout performs an account verification procedure prior to passing the card information to
a merchant.

Important
Although Visa Checkout performs an array of proprietary fraud checks while interacting with
consumers, Visa Checkout never declines a transaction request based on risk concerns. Your
own control models, processes, and procedures should provide the best protection against
fraud based on the philosophy that you know your customers and their behavior the best and
are in the best position to assess your own risk tolerance for a given transaction. VISA
CHECKOUT FRAUD CHECKS SHOULD NEVER BE USED TO REPLACE OR SUPPLANT YOUR
OWN TECHNIQUES; RATHER, THEY SHOULD SUPPLEMENT YOUR EXISTING CONTROLS.

Related Content
Fraud and Risk (Parent Topic)

January 23, 2019 1-21

Visa Checkout Declines

Declines

Declines are the responsibility of the card issuer and the merchant. Visa Checkout does not
decline transactions at a transaction level, except in extreme circumstances; for example, when
an account has been disabled due to suspicious activity or a government sanctions list match.

Related Content
Fraud and Risk (Parent Topic)

Card Security Code Usage

Visa Checkout performs a verification of the card security code for each card added to a Visa
Checkout transaction. Similar to a card-on-file scenario, the validation is performed once,
without re-verifying the card security code during each use of the card.

Important
Never collect from consumers their CVV2, CVN, CVC2, CID or any other such security feature for
any “card not present” transactions (collectively called card security codes) separate and apart
from Visa’s collection of the same via the checkout experience with the Visa Checkout Services
unless you have Visa’s express written consent to do so, or your collection of the card security
code is specifically required by Visa's Rules. You must never store card security codes.

You are encouraged to implement best practices in regard to risk management for Visa
Checkout transactions as you would for any other e-commerce transaction. Because a card
security code has been validated for the Visa Checkout payment method being used, a
historical match response should be assumed.

Currently, card brands supported by Visa Checkout do not downgrade interchange based on
the absence of a card security code for "card not present" transactions. You should check with
your acquirer or processor to determine whether they have any policies or fees specific to your
contract that may be related to authorizations that do not contain a card security code.

Typically, the card security code in a response is optional information that can be included in a
re-presentment. However, whether a card security code is required to reverse a particular
charge-back, may depend on the card brand. Merchants are encouraged to speak directly with
their acquirer to understand the charge-back re-presentment rules and reversal criteria for a
specific card brand.

Note
Although AVS and card security codes, e.g. CVV2, are verified when a card is added to the Visa
Checkout account, verification information may not always be available in the consumer
information payload; in which case, ‘unavailable (0)’ is returned for those values.

Related Content
Fraud and Risk (Parent Topic)

Verified by Visa (3–D Secure) Transactions

When configured, Visa Checkout supports Verified by Visa (VbV) authentication checks and
returns VbV authentication information in the consumer information payload. You will provide
VbV information in the payload to your processor as required by the processor's authorization
message. Contact your Visa representative for VbV specific configuration information.

Related Content
Fraud and Risk (Parent Topic)

1-22 January 23, 2019

Integration Overview Visa Checkout

Enabling Strong Authentication on First Use of a Card

Enabling Strong Authentication on First Use of a Card

When configured for 3-D Secure, authentication generally takes place on each transaction
within the Visa Checkout experience. In each of the following designated countries, however,
merchants and partners must allow issuers to authenticate consumers on the first use of the
card in Visa Checkout:

• France
• India
• Ireland
• Poland
• Spain
• United Kingdom

Visa Checkout supports authentication on first use of Visa, Mastercard, and American Express
cards in these designated countries. Merchants and partners can configure their Visa Checkout
account to use 3-D Secure to perform a consumer authentication check when Visa, Mastercard,
and American Express cards are first used in Visa Checkout in these designated countries.

Merchants or partners can configure 3-D Secure for Visa, Mastercard, and American Express in
Visa Checkout to apply on first use only. Alternatively, merchants or partners can configure 3–D
Secure for Visa, Mastercard, and American Express for every transaction only. Merchants and
partners can also configure 3–D Secure for Visa, Mastercard, and American Express in Visa
Checkout on first use and for every transaction. The Suppress Challenge override
(threeDSSuppressChallenge) setting is ignored and the issuer authentication step-up, if
available, is always presented.

When configured to authenticate on first use of a card, authentication fields are returned in the
consumer information payload when a consumer in a designated country first uses a card in
Visa Checkout, even when 3-D Secure has not been activated for general use.

Important
If merchants or partners do not have a Visa Checkout profile for 3-D Secure configured to
enable the required consumer authentication during a first Visa Checkout transaction, or if the
authentication fails, the merchant or partner must perform the required consumer
authentication in their own checkout experience.

When consumer authentication is performed on first use, the firstUseAuthenticated
field is returned in the consumer information payload.

Related Content
Verified by Visa (3–D Secure) Transactions (Parent Topic)

January 23, 2019 2-1

Visa Checkout Assets and
Placements 2
General Visa Checkout Button Placement and Flow
Requirements
You are required to implement the Visa Checkout branding requirements on all pages where
the consumer is presented payment method options, such as Visa Checkout or another
payment method. Common examples include shopping cart pages, login pages, product
pages, and payment pages. Your actual implementation depends on your specific flow.

You can use Visa Checkout on any page or in any flow on your site or app where a consumer is
asked to enter their billing and payment information. Common examples include cart pages
(both full and mini) pages, payment pages, card-on-file management pages, or immediately
before a flow where a consumer is prompted for personal information, which may be available,
at least partially, within Visa Checkout.

Because Visa Checkout already has consumer shipping information and payment options,
giving consumers the opportunity to specify choices at the beginning of the checkout process
may enable them to complete the transaction with less effort that might otherwise be
required. The following diagram show how placing Visa Checkout buttons on a shopping cart
and log in page might work:

Some consumers may not select the Visa Checkout button initially, in which case you should
also offer Visa Checkout to consumers when they choose a payment method, which still
enables them to use Visa Checkout for payment:

2-2 January 23, 2019

Visa Checkout Assets and Placements Visa Checkout

The implementation flow above shows a radio button with a Visa acceptance mark. When the
consumer chooses the Visa Checkout radio button, the Visa Checkout button appears, which
enables the consumer to log in to Visa Checkout to choose their payment card before
continuing on to your payment page.

January 23, 2019 3-1

Visa Checkout JavaScript and Button
3

JavaScript Library — sdk.js

Use the sdk.js JavaScript library to control the operation of Visa Checkout on your site.

Sandbox Path

https://sandbox-assets.secure.checkout.visa.com/checkout-widget/resources
/js/integration/v1/sdk.js

Live Path

https://assets.secure.checkout.visa.com/checkout-widget/resources
/js/integration/v1/sdk.js

Related Content
Example: JavaScript Library — sdk.js

Example: JavaScript Library — sdk.js

<body>
...
<script type="text/javascript"
src="https://sandbox-assets.secure.checkout.visa.com/
checkout-widget/resources/js/integration/v1/sdk.js">

</script>
</body>

Related Content
JavaScript Library — sdk.js (Parent Topic)

Image Class v-button
Use v-button img class to render a Visa Checkout button on your web site to initiate a
payment. Rendered buttons must follow Visa Checkout user interface guidelines.

Sandbox Path

https://sandbox.secure.checkout.visa.com/wallet-services-web/xo/button.png

Live Path

https://secure.checkout.visa.com/wallet-services-web/xo/button.png

Related Content

3-2 January 23, 2019

Visa Checkout JavaScript and Button Visa Checkout

v-button Parameters

Example: Rendering a Visa Checkout Button

v-button Parameters

Field Description

size (Optional)Width of the button, in pixels.

You can either specify size to display a standard
size button, or you can specify height and width
to specify a custom size. If you do not specify size
or both height and width, the button size is 213
pixels. If you specify height or width, the value
of size is ignored.

Format: It is one of the following values:

• 154 - small
• 213 - medium (default)
• 425 - High resolution or large

Any other value defaults to 213 pixels.

Example: size=154

Since 2.0

height Height of the button, in pixels, for custom button
sizes.

You must specify the height if you specify a value
for width. The value you choose determines the
range of allowable values for width.

Format: It is one of the following values:

• 34

• 47

• 94

Example: height=94

Since 2.4

width Width of the button, in pixels, for custom button
sizes. You must specify the width if you specify a
value for height.

Format: It is one of the following values:

• less than 477 if height is 34; default value is
154

• greater than 212 and less than 659 if height
is 47; default value is 213

January 23, 2019 3-3

Visa Checkout v-button Parameters

Field Description

• greater than 424 and less than 1317 if height
is 94; default value is 425

The default value is used if the value for width is
invalid for the specified height.

Example: width=200

Since 2.4

locale (Optional) The locale, which controls how text
displays in a Visa Checkout button and the Visa
Checkout lightbox.

Format: It is one of the following values:

• es_AR - Argentina, Spanish (Since 3.5; en_AR
2.9-3.4)

• en_AU - Australia, English
• pt_BR - Brazil, Portuguese (Since 3.5; en_BR

2.9-3.4)
• en_CA - Canada, English
• fr_CA - Canada, French
• en_CN - China, English (Since 2.9)
• zh_CN - China, Simplified Chinese (Since 3.5)

Note
For display purposes only; input is in English.

• es_CL - Chile, Spanish (Since 3.5; en_CL 2.9-
3.4)

• es_CO - Colombia, Spanish (Since 3.5; es_CO
2.9-3.4)

• fr_FR - France, French (Since 4.3)
• zh_HK - Hong Kong, Chinese (Since 3.5)

Note
For display purposes only; input is in English.

• en_HK - Hong Kong, English (Since 2.9)
• en_IN - India, English (Since 4.6)
• en_IE - Ireland, English (Since 4.3)
• en_KW - Kuwait, English (Since 5.1)
• en_MY - Malaysia, English (Since 2.9)
• es_MX - Mexico, Spanish (Since 3.5; en_MX 2.9-

3.4)
• en_NZ - New Zealand English (Since 2.9)
• es_PE - Peru, Spanish (Since 3.5; en_PE 2.9-

3.4)

3-4 January 23, 2019

Visa Checkout JavaScript and Button Visa Checkout

Field Description

• pl_PL - Poland, Polish (Since 4.3)
• en_QA - Qatar, English (Since 5.1)
• en_SA - Saudi Arabia, English (Since 5.1)
• en_SG - Singapore, English
• en_ZA - South Africa, English (Since 2.9)
• es_ES - Spain, Spanish (Since 4.3)
• en_UA - Ukraine, English (Since 5.1)
• uk_UA - Ukraine, Ukranian (Since 5.1)

Note
For display purposes only; input is in English.

• en_AE - United Arab Emirates, English (Since
2.9)

• en_GB - United Kingdom, English (Since 4.3)
• en_US - United States, English

Since 2.0

color (Optional) The color of the Visa Checkout button.

Format: It is one of the following values:

• standard (default)

• neutral

Note
Any other value for color will default to
standard

Example: color=neutral

Since 2.5

cardBrands (Optional) Override value for brands associated
with card art to be displayed. If a brand matching
the consumer's preferred card is specified, the card
art is displayed on the button; otherwise, a generic
button is displayed. VISAmust be included if
acceptCanadianVisaDebit is true.

Format: Comma-separated list of one or more of
the following brands:

• VISA

• MASTERCARD

January 23, 2019 3-5

Visa Checkout Example: Rendering a Visa Checkout Button

Field Description

• AMEX

• DISCOVER

• ELECTRON (Brazil only; since 3.9)
• ELO (Brazil only; since 3.9)

Example: cardBrands=VISA,AMEX

Since 2.0

acceptCanadianVisaDebit Whether a Canadian merchant accepts Visa Canada
debit cards; required for Canadian merchants,
otherwise, ignored. Visa must be specified as an
allowable card brand.

Format: It is one of the following values:

• true - Visa Canada debit cards accepted
• false - Visa Canada debit cards not accepted

Example: acceptCanadianVisaDebit="true"

Since 2.0

cobrand For future use.

Format: It is one of the following values:

• true

• false

Example: cobrand="true"

Since 4.6

Related Content
Image Class v-button (Parent Topic)

Example: Rendering a Visa Checkout Button

<body>
...
<img alt="..." class="v-button" role="button" src=
"https://sandbox.secure.checkout.visa.com/wallet-services-web/xo/button.png?..."
/>
...
</body>

Note
You can specify tabbing behavior to the button by including the tabindex attribute:

<img alt="..." class="v-button" role="button" tabindex="0" src=
"https://sandbox.secure.checkout.visa.com/wallet-services-web/xo/button.png?..."
/>

Related Content

3-6 January 23, 2019

Visa Checkout JavaScript and Button Visa Checkout

Image Class v-button (Parent Topic)

Tell Me More Link
Use the v-learn <a> (hyperlink) class to provide a Tell Me More link that a consumer clicks
to learn more about Visa Checkout. The class causes a pop up to be displayed in the specified
language, which by default is en_US. An example link and associated pop-up window are
shown in Getting Started With Visa Checkout.

You must provide the link's text, which typically is Tell Me More, in the specified locale:

January 23, 2019 3-7

Visa Checkout Tell Me More Link

Field Description

data-locale (Optional) The locale, which controls how the pop
up text displays in a Tell Me More link.

Format: It is one of the following values:

• es_AR - Argentina, Spanish (Since 3.5; en_AR
2.9-3.4)

• en_AU - Australia, English
• pt_BR - Brazil, Portuguese (Since 3.5; en_BR

2.9-3.4)
• en_CA - Canada, English
• fr_CA - Canada, French
• en_CN - China, English (Since 2.9)
• zh_CN - China, Simplified Chinese (Since 3.5)

Note
For display purposes only; input is in English.

• es_CL - Chile, Spanish (Since 3.5; en_CL 2.9-
3.4)

• es_CO - Colombia, Spanish (Since 3.5; es_CO
2.9-3.4)

• fr_FR - France, French (Since 4.3)
• zh_HK - Hong Kong, Chinese (Since 3.5)

Note
For display purposes only; input is in English.

• en_HK - Hong Kong, English (Since 2.9)
• en_IN - India, English (Since 4.6)
• en_IE - , English (Since 4.3)
• en_KW - Kuwait, English (Since 5.1)
• en_MY - Malaysia, English (Since 2.9)
• es_MX - Mexico, Spanish (Since 3.5; en_MX 2.9-

3.4)
• en_NZ - New Zealand English (Since 2.9)
• es_PE - Peru, Spanish (Since 3.5; en_PE 2.9-

3.4)
• pl_PL - Poland, Polish (Since 4.3)
• en_QA - Qatar, English (Since 5.1)
• en_SA - Saudi Arabia, English (Since 5.1)
• en_SG - Singapore, English
• en_ZA - South Africa, English (Since 2.9)
• es_ES - Spain, Spanish (Since 4.3)

3-8 January 23, 2019

Visa Checkout JavaScript and Button Visa Checkout

Field Description

• en_UA - Ukraine, English (Since 5.1)
• uk_UA - Ukraine, Ukranian (Since 5.1)

Note
For display purposes only; input is in English.

• en_AE - United Arab Emirates, English (Since
2.9)

• en_GB - United Kingdom, English (Since 4.3)
• en_US - United States, English

Since 2.5

The v-learn class does not provide styling. To provide default styling, you can use the v-
learn-default class in addition to the v-learn class. The v-learn-default class
provides default styling, e.g., color, font, size, and right-alignment of the text to the Visa
Checkout button's container, not to the button itself. The Visa Checkout button and Tell Me
More link must to be wrapped inside a parent <div>, whose width is the width of the button.

Related Content
Example: Tell Me More Link

Example: Tell Me More Link

The following example shows how to provide a Tell Me More link with default styling:

<div class="v-checkout-wrapper">
<img
class="v-button" role="button" alt="Visa Checkout"
src="https://sandbox.secure.checkout.visa.com/wallet-services-web/xo/button.png">
Tell Me More
</div>

Related Content
Tell Me More Link (Parent Topic)

Defining onVisaCheckoutReady Function

The Visa Checkout button and lightbox operations are controlled by defining the
onVisaCheckoutReady function that includes event handlers for initialization and purchase
events. The function includes the following event handlers:

January 23, 2019 3-9

Visa Checkout Defining V.init Event Handler

Event Handler Description

V.init (Required) Event handler for initialization. Specify
values for initialization in this handler.

Since 2.0

V.on (Required) Event handler for Visa Checkout
purchase events. The event handler specifies
actions to take on the following Visa Checkout
events:

• payment.success

• payment.cancel

• payment.error

• pre-payment.user-data-prefill (since
5.5)

Since 2.0

Defining V.init Event Handler

Use the V.init event handler to specify a JSON object that contains initialization values for
the Visa Checkout JavaScript library. Specify values for the following properties:

Property Description

apikey (Required) The API key created with the Visa
Checkout account. Use both a live key and a
sandbox key, which are different from each other.

Format: Alphanumeric; maximum 49 characters

Example: apikey=...

Since 2.0

encryptionKey (Required) Visa Checkout encrypts data in the
consumer information payload using the shared
secret associated with this encryption key.

Format: Alphanumeric; maximum 49 characters

Example: encryptionKey=...

Since 6.3

referenceCallID (Optional) Visa Checkout transaction ID. The
referenceCallID can be used with the
Preselected Checkout Feature.

Format: Alphanumeric; maximum 48 characters.

Example: "referenceCallID":"..."

3-10 January 23, 2019

Visa Checkout JavaScript and Button Visa Checkout

externalProfileId (Optional) Profile ID, which is created externally by
a merchant or partner, which Visa Checkout uses to
populate settings, such as accepted card brands
and shipping regions. The properties set in this
profile override properties in the merchant's
current profile.

Format: Alphanumeric; maximum 50 characters

externalClientId Not required for merchants. For partners, it is the
unique ID associated with a partner's client, such as
the ID of a merchant onboarded by the partner.
Typically, the external client ID is assigned by a
partner; however, Visa Checkout assigns a value if
one is not specified.

Note
Some integration strategies, such as that for a
hosted order solution, may require specific
values to be set; contact your Visa Checkout
representative for more information.

Format: Alphabetic, numeric, hyphens (-), and
underscores (_), e.g. spaces are not allowed;
maximum 100 characters.

settings (Optional) One or more name-value pairs, each of
which specifies a configuration attribute.

Format: A settings structure.

Since 2.0

paymentRequest (Optional) One or more name-value pairs, each of
which specifies a payment request attribute.

Format: A paymentRequest structure.

Related Content
Merchant Example

Partner Hosted Merchant Example

Payment Request Properties

Settings Properties

Merchant Example

<head>
...
<script type="text/javascript">

function onVisaCheckoutReady(){
V.init({ apikey: "merchantApikey",... });
V.on("payment.success", function(payment){ ... });
V.on("payment.cancel", function(payment){ ... });
V.on("payment.error", function(payment, error){ ... });

January 23, 2019 3-11

Visa Checkout Partner Hosted Merchant Example

}
</script>

...
</head>

Related Content
Defining V.init Event Handler (Parent Topic)

Partner Hosted Merchant Example

<head>
...

<script type="text/javascript">
function onVisaCheckoutReady(){
V.init({ apikey: "partnerApikey",

externalClientId: "partnerIDforMerchant"
externalProfileId: "partnerProfileIDforMerchant" });

V.on("payment.success", function(payment){ ... });
V.on("payment.cancel", function(payment){ ... });
V.on("payment.error", function(payment, error){ ... });
}

</script>
...
</head>

Related Content
Defining V.init Event Handler (Parent Topic)

Payment Request Properties

Property Description

merchantRequestId (Optional)Merchant's ID associated with the
request. Visa Checkout stores this value for your
use as a convenience.

Format: Alphanumeric; maximum 100 characters

Since 2.0

currencyCode (Required) The currency with which to process the
transaction.

Format: It is one of the following ISO 4217
standard alpha-3 code values:

• ARS - Argentine Peso (Since 2.7)
• AUD - Australian Dollar
• BRL - Brazilian Real (Since 2.7)
• CAD - Canadian Dollar
• CNY - Yuan Renminbi (Since 2.7)
• CLP - Chilean Peso (Since 2.7)

3-12 January 23, 2019

Visa Checkout JavaScript and Button Visa Checkout

Property Description

• COP - Colombian Peso (Since 2.7)
• EUR - Euro (Since 4.3)
• HKD - Hong Kong Dollar (Since 2.7)
• INR - Indian rupee (Since 4.6)
• KWD - Kuwaiti Dinar (Since 5.1)
• MYR - Malaysian Ringgit (Since 2.7)
• MXN - Mexican Peso (Since 2.7)
• NZD - New Zealand Dollar (Since 2.7)
• PEN - Nuevo Sol - Peru (Since 2.7)
• PLN - Polish Zloty (Since 4.3)
• QAR - Qatari Riyal (Since 5.1)
• SAR - Saudi Riyal (Since 5.1)
• SGD - Singapore Dollar (Since 2.7)
• ZAR - Rand (Since 2.7)
• AED - UAE Dirham (Since 2.7)
• UAH - Ukranian Hryvnia (Since 5.1)
• GBP - UK Pound Sterling (Since 4.3)
• USD - US Dollar

Currency codes must be uppercase.

Example: "currencyCode" : "USD"

Since 2.0

subtotal (Required) Subtotal of the payment.

Format: Numeric; maximum 9 digits before an
optional decimal point and 4 decimal digits

Example: "subtotal" : "9.00"

Since 2.0

shippingHandling (Optional) Total of shipping and handling charges
in the payment.

Format: Numeric; maximum 9 digits before an
optional decimal point and 4 decimal digits

Example: "shippingHandling" : "3.00"

Since 2.0

tax (Optional) Total tax-related charges in the
payment.

Format: Numeric; maximum 9 digits before an
optional decimal point and 4 decimal digits

January 23, 2019 3-13

Visa Checkout Payment Request Properties

Property Description

Example: "tax" : "1.00"

Since 2.0

discount (Optional) Total of discounts related to the
payment. If provided, it is a positive value
representing the amount to be deducted from the
total.

Format: Numeric; maximum 9 digits before an
optional decimal point and 4 decimal digits

Example: "discount" : "2.50"

Since 2.0

giftWrap (Optional) Total gift-wrapping charges in the
payment.

Format: Numeric; maximum 9 digits before an
optional decimal point and 4 decimal digits

Example: "giftWrap" : "1.99"

Since 2.0

misc (Optional) Total uncategorized charges in the
payment.

Format: Numeric; maximum 9 digits before an
optional decimal point and 4 decimal digits

Example: "misc" : "1.00"

Since 2.0

total (Optional) Total of the payment including all
amounts.

Format: Numeric; maximum 9 digits before an
optional decimal point and 4 decimal digits

Example: "total" : "9.00"

Since 2.0

orderId (Optional)Merchant's order ID associated with the
payment.

Format: Alphanumeric; maximum 100 characters

Since 2.0

description (Optional) Description associated with the
payment.

Format: Alphabetic characters, digits, spaces (),
periods (.), underscores (_), and hyphens (-);
maximum 100 characters

3-14 January 23, 2019

Visa Checkout JavaScript and Button Visa Checkout

Property Description

Since 2.0

promoCode (Optional) Promotion codes associated with the
payment.

Format: Alphabetic characters, digits, space (),
underscore (_), hyphen (-), exclamation point (!
), "at" sign (@), pound sign or hash mark (#),
dollar sign ($), percent sign (%), asterisk (*), left/
open parenthesis ((), right/close parenthesis ()),
and plus sign (+). Multiple promotion codes are
separated by a period (.); maximum 100
characters for the entire string

Example: "promoCode": "17.15"

Since 2.0

customData (Optional)Merchant-supplied data, as name-value
pairs.

Format: Alphanumeric; maximum 1024 characters

Example:

customData: {
"nvPair": [
{ "name": "Name1", "value": "value1" },
{ "name": "Name2", "value": "value2" }
] ...

Since 2.0

Related Content
Defining V.init Event Handler (Parent Topic)

Payment Request Configuration Example

Payment Request Configuration Example

You specify the payment request for which the consumer is being asked to agree:

V.init({
...
paymentRequest: {
merchantRequestId: "Merchant defined request ID",
currencyCode: "USD",
subtotal: "10.00",
shippingHandling: "2.00",
tax: "2.00",
discount: "1.00",
giftWrap: "2.00",
misc: "1.00",
total: "16.00",
description: "...corp Product",
orderId: "Merchant defined order ID",

January 23, 2019 3-15

Visa Checkout Payment Request Configuration Example

promoCode: "Merchant defined promo code",
customData: {
"nvPair": [
{ "name": "customName1", "value": "customValue1" },
{ "name": "customName2", "value": "customValue2" }
]

...
);

Related Content
Payment Request Properties (Parent Topic)

3-16 January 23, 2019

Visa Checkout JavaScript and Button Visa Checkout

Settings Properties

Property Description

locale (Optional) Override value for the locale, which
controls how text displays in the Visa Checkout
checkout button and lightbox.

Format: It is one of the following values:

• es_AR - Argentina, Spanish (Since 3.5; en_AR
2.9-3.4)

• en_AU - Australia, English
• pt_BR - Brazil, Portuguese (Since 3.5; en_BR

2.9-3.4)
• en_CA - Canada, English
• fr_CA - Canada, French
• en_CN - China, English (Since 2.9)
• zh_CN - China, Simplified Chinese (Since 3.5)

Note
For display purposes only; input is in
English.

• es_CL - Chile, Spanish (Since 3.5; en_CL 2.9-
3.4)

• es_CO - Colombia, Spanish (Since 3.5; en_CO
2.9-3.4)

• fr_FR - France, French (Since 4.3)
• zh_HK - Hong Kong, Chinese (Since 3.5)

Note
For display purposes only; input is in
English.

• en_HK - Hong Kong, English (Since 2.9)
• en_IN - India, English (Since 4.6)
• en_IE - Ireland, English (Since 4.3)
• en_KW - Kuwait, English (Since 5.1)
• en_MY - Malaysia, English (Since 2.9)
• es_MX - Mexico, Spanish (Since 3.5; en_MX 2.9-

3.4)
• es_PE - Peru, Spanish (Since 3.5; en_PE 2.9-

3.4)
• en_NZ - New Zealand English (Since 2.9)
• pl_PL - Poland, Polish (Since 4.3)
• en_QA - Qatar, English (Since 5.1)
• en_SA - Saudi Arabia, English (Since 5.1)

January 23, 2019 3-17

Visa Checkout Settings Properties

Property Description

• en_SG - Singapore, English
• en_ZA - South Africa, English (Since 2.9)
• es_ES - Spain, Spanish (Since 4.3)
• en_UA - Ukraine, English (Since 5.1)
• uk_UA - Ukraine, Ukranian (Since 5.1)

Note
For display purposes only; input is in
English.

• en_AE - United Arab Emirates, English (Since
2.9)

• en_GB - United Kingdom, English (Since 4.3)
• en_US - United States, English

The value of the locale attribute must be
compatible with the value of the country
attribute.

Since 2.0

countryCode (Optional) Override value for the country code,
which controls how text displays in the Visa
Checkout checkout button and lightbox. By default,
Visa Checkout determines the country from the
consumer's IP address. Do not use the
countryCode attribute unless explicit control over
the display is required.

Format: One of the following ISO-3166-1 alpha-2
standard codes:

• AR - Argentina (Since 2.7)
• AU - Australia
• BR - Brazil (Since 2.7)
• CA - Canada
• CL - Chile (Since 2.9)
• CN - China (Since 2.9)
• CO - Colombia (Since 2.9)
• FR - France (Since 4.3)
• HK - Hong Kong (Since 2.9)
• IN - India (Since 4.6)
• IE - Ireland (Since 4.3)
• KW - Kuwait (Since 5.1)
• MY - Malaysia (Since 2.9)
• MX - Mexico (Since 2.9)
• NZ - New Zealand (Since 2.9)

3-18 January 23, 2019

Visa Checkout JavaScript and Button Visa Checkout

Property Description

• PE - Peru (Since 2.9)
• PL - Poland (Since 4.3)
• QA - Qatar (Since 5.1)
• SA - Saudi Arabia (Since 5.1)
• SG - Singapore
• ZA - South Africa (Since 2.9)
• ES - Spain (Since 4.3)
• UA - Ukraine (Since 5.1)
• AE - United Arab Emirates (Since 2.9)
• GB - United Kingdom (Since 4.3)
• US - United States

The value of the country attribute must be
compatible with the value of the locale attribute.

Since 2.0

displayName (Optional) The merchant's name as it appears on
the Review panel of the lightbox; typically, it is the
name of your company.

Format:Maximum 100 characters, either
alphabetic, numeric, spaces, or the following
characters: ! @ # $ % ^ & * - ' ? and period (.)

Since 2.0

websiteUrl (Optional) Complete URL to your website.

Format: Valid URL, beginning with HTTP;
maximum 256 characters

Since 2.0

customerSupportUrl (Optional) Your complete customer service or
support URL.

Format: Valid URL, beginning with HTTP;
maximum 256 characters

Since 2.0

shipping (Optional) Shipping properties associated with the
lightbox

Format: shipping

Since 2.0

review (Optional) Review properties associated with the
lightbox

Format: review

January 23, 2019 3-19

Visa Checkout Settings Properties

Property Description

Since 2.0

payment (Optional) Payment method properties associated
with the lightbox

Format: payment

Since 2.0

threeDSSetup (Optional) Verified by Visa setup properties

Format: threeDSSetup

Since 2.8

dataLevel (Optional) The level of consumer and payment
information that the payment.success event
response should include. If you request
information, permission to receive full information
must be configured in Visa Checkout; otherwise,
you will always receive only summary information,
regardless of the data level you specify.

When onboarded by a partner, the
enablePANAccessfield of the onboarding API
determines the default value for dataLevel. If
enablePANAccessistruewhen the merchant is
onboarded, the default dataLevel isFULL ;
otherwise, the default dataLevelis SUMMARY. For
information about the enablePANAccessfield in
the onboarding API, see the Client API Reference,
Partner Edition.

Format: It is one of the following values:

• SUMMARY - Summary information
• FULL - Full information, which is only available

if you are configured to receive it
• NONE - Consumer and payment information is

not returned in the payment.success event
response, in which case the Get Payment Data
API must be used to obtain the information.
Since 2.5.

Since 2.0

3-20 January 23, 2019

Visa Checkout JavaScript and Button Visa Checkout

Property Description

currencyFormat (Optional) A string that specifies the display format
for a currency amount associated with the Pay
button in the lightbox. If not set here, the default
format displays the amount as xxx
999,999,999.99, where xxx is the ISO 4217
standard alpha-3 currency code for the currency
being used, suppressing leading zeros (0) and
truncating additional precision in the display; for
example, USD 1,000.00. The actual value being
displayed remains unchanged.

Note
Incorrectly formatted currencyFormat values
result in the amount being displayed in the
default format.

Format: String that contains the currency display
format.

Example: "currencyFormat" :
"currencyCodeSymbol ###,###,###.##"

Since 4.2

enableUserDataPrefill (Optional)Whether the user data prefill event
handler is active for this transaction.

You must be enabled by Visa Checkout to use the
prefill feature; contact Visa Checkout for more
information.

Format: It is one of the following Boolean values:

• true - Active; the consumer’s lightbox can be
prefilled

• false - Inactive; the consumer’s lightbox
cannot be prefilled (default)

Example: "enableUserDataPrefill":true

Since 5.5

Related Content
Defining V.init Event Handler (Parent Topic)

Lightbox Panel Configuration Example

Shipping Properties

Review Properties

Payment Properties

Verified by Visa Setup Properties

January 23, 2019 3-21

Visa Checkout Lightbox Panel Configuration Example

Lightbox Panel Configuration Example

You can customize the appearance of lightbox panels, including the language in which text
appears, whether the confirmation button is Continue or Pay, and various messages and
ornaments:

V.init({
...
settings: {
locale: "en_US",
countryCode: "US",
displayName: "...Corp",
websiteUrl: "www....Corp.com",
customerSupportUrl: "www....Corp.support.com",
...
dataLevel: "FULL"
...

);

Related Content
Settings Properties (Parent Topic)

3-22 January 23, 2019

Visa Checkout JavaScript and Button Visa Checkout

Shipping Properties

Property Description

acceptedRegions (Optional) Override value for shipping region
country codes in the merchant's external default
profiles, which limits selection of eligible addresses
in the consumer's account. If not set in a profile or
overridden here, shipping addresses for all listed
countries are allowed.

Format: One of the following ISO-3166-1 alpha-2
standard codes:

• AR - Argentina (Since 2.7)
• AU - Australia
• BR - Brazil (Since 2.7)
• CA - Canada
• CL - Chile (Since 2.9)
• CN - China (Since 2.9)
• CO - Colombia (Since 2.9)
• FR - France (Since 4.3)
• HK - Hong Kong (Since 2.9)
• IN - India (Since 4.6)
• IE - Ireland (Since 4.3)
• KW - Kuwait (Since 5.1)
• MY - Malaysia (Since 2.9)
• MX - Mexico (Since 2.9)
• NZ - New Zealand (Since 2.9)
• PE - Peru (Since 2.9)
• PL - Poland (Since 4.3)
• QA - Qatar (Since 5.1)
• SA - Saudi Arabia (Since 5.1)
• SG - Singapore
• ZA - South Africa (Since 2.9)
• ES - Spain (Since 4.3)
• UA - Ukraine (Since 5.1)
• AE - United Arab Emirates (Since 2.9)
• GB - United Kingdom (Since 4.3)
• US - United States

Since 2.0

January 23, 2019 3-23

Visa Checkout Shipping Options Configuration Example

Property Description

collectShipping (Optional)Whether to obtain a shipping address
from the consumer.

Format: One of the following values:

• true - Obtain shipping address (default)
• false - Shipping address is not required

Since 2.0

Related Content
Settings Properties (Parent Topic)

Shipping Options Configuration Example

Shipping Options Configuration Example

You can specify whether the consumer can set the shipping address (collectShipping) and
the regions to which you ship:

V.init({
...
settings: {
...
shipping: {
acceptedRegions: ["US", "CA"],
collectShipping: "true"

},
...

);

Related Content
Shipping Properties (Parent Topic)

3-24 January 23, 2019

Visa Checkout JavaScript and Button Visa Checkout

Review Properties

Property Description

message (Optional) Your message to display on the Review
page. You are responsible for translating the
message.

Format:Maximum 100 characters, either
alphabetic, numeric, spaces, or the following
characters: ! @ # $ % ^ & * - ' ? and period (.).

Note
If you exceed the maximum number of
characters, the default review message is
displayed.

Since 2.0

buttonAction (Optional) The button label in the Visa Checkout
lightbox.

Format: One of the following values:

• Continue - Display Continue on the lightbox
button (default)

• Pay - Display Pay on the lightbox button

Note
A valid value for totalmust be specified
when using Pay on the button; otherwise
Continue will be displayed.

Since 2.0

Related Content
Settings Properties (Parent Topic)

Review Options Configuration Example

Review Options Configuration Example

You can specify a message to display in the Visa Checkout lightbox and control the button text:

V.init({
...
settings: {
...
review: {

message: "Review message to display in lightbox",
buttonAction: "Pay"

},
...

);

Related Content

January 23, 2019 3-25

Visa Checkout Review Options Configuration Example

Review Properties (Parent Topic)

3-26 January 23, 2019

Visa Checkout JavaScript and Button Visa Checkout

Payment Properties

Property Description

cardBrands (Optional) Card brands that are accepted. The
VISA brand must be included if
acceptCanadianVisaDebit is true. If not set
in a profile or overridden here, all listed card
brands are accepted.

Format: Array containing one or more of the
following brands:

• VISA

• MASTERCARD

• AMEX

• DISCOVER

• ELECTRON (Brazil only; since 3.9)
• ELO (Brazil only; since 3.9)

Since 2.0

acceptCanadianVisaDebit (Optional) Override of whether a Canadian
merchant accepts Visa Canada debit cards; ignored
for non-Canadian merchants. Visa must be
specified as an allowable card brand.

Format: One of the following values:

• true - Visa Canada debit cards accepted
• false - Visa Canada debit cards not accepted

Example: acceptCanadianVisaDebit :
"true"

Since 2.0

billingCountries (Optional) Override value for billing country codes
in the merchant's external or default profiles, which
limits selection of eligible cards in the consumer's
account. If not set in a profile or overridden here,
payments from all listed billing countries are
accepted.

Format: One of the following ISO-3166-1 alpha-2
standard codes:

• AR - Argentina (Since 2.7)
• AU - Australia
• BR - Brazil (Since 2.7)
• CA - Canada
• CL - Chile (Since 2.9)
• CN - China (Since 2.9)

January 23, 2019 3-27

Visa Checkout Payment Options Configuration Example

Property Description

• CO - Colombia (Since 2.9)
• FR - France (Since 4.3)
• HK - Hong Kong (Since 2.9)
• IN - India (Since 4.6)
• IE - Ireland (Since 4.3)
• KW - Kuwait (Since 5.1)
• MY - Malaysia (Since 2.9)
• MX - Mexico (Since 2.9)
• NZ - New Zealand (Since 2.9)
• PE - Peru (Since 2.9)
• PL - Poland (Since 4.3)
• QA - Qatar (Since 5.1)
• SA - Saudi Arabia (Since 5.1)
• SG - Singapore
• ZA - South Africa (Since 2.9)
• ES - Spain (Since 4.3)
• UA - Ukraine (Since 5.1)
• AE - United Arab Emirates (Since 2.9)
• GB - United Kingdom (Since 4.3)
• US - United States

Example: billingCountries:
["US","CA","AU"]

Since 2.0

Related Content
Settings Properties (Parent Topic)

Payment Options Configuration Example

Payment Options Configuration Example

You can limit the kind of cards you accept:

V.init({
...
settings: {
...
payment: {
cardBrands: [
"VISA",
"MASTERCARD"],
acceptCanadianVisaDebit : "true",
billingCountries:["US","CA","AU"]

3-28 January 23, 2019

Visa Checkout JavaScript and Button Visa Checkout

},
...

},
...

);

Related Content
Payment Properties (Parent Topic)

Verified by Visa Setup Properties

Property Description

threeDSActive (Optional)Whether Verified by Visa (VbV) is active
for this transaction. If Verified by Visa is configured,
you can use threeDSActive to deactivate it for
the transaction; otherwise, VbV will be active if it
has been configured.

Format:The following value:

• false - Do not use Verified by Visa for this
transaction.

Since 2.7

threeDSSuppress
Challenge

(Optional)Whether a Verified by Visa (VbV)
consumer authentication prompt is suppressed for
this transaction. If true, VbV authentication is
performed only when it is possible to do so without
the consumer prompt.

Format:It is one of the following values:

• true - Do not display a consumer prompt.
• false - Allow a consumer prompt.

Since 3.2

Related Content
Settings Properties (Parent Topic)

Deactivate Verified by Visa for a Transaction Example

Suppress Verified by Visa Consumer Prompt Example

Deactivate Verified by Visa for a Transaction Example

V.init({
...
settings: {
...
threeDSSetup: {
threeDSActive : "false"
},
...

January 23, 2019 3-29

Visa Checkout Suppress Verified by Visa Consumer Prompt Example

},
...
);

Related Content
Verified by Visa Setup Properties (Parent Topic)

Suppress Verified by Visa Consumer Prompt Example

V.init({
...
settings: {
...
threeDSSetup: {
threeDSSuppressChallenge : "true"

},
...
},

...
);

Related Content
Verified by Visa Setup Properties (Parent Topic)

Response to Payment Success Events

The response associated with the payment.success event returns the following information:

Property Description

callid Visa Checkout transaction ID associated with a
payment request. By default, the callid does not
expire. You can request an expiration for a
specified period, in days; however, it should be
greater than merchant session timeout.

Format: Alphanumeric; maximum 48 characters

Example: "callid":"..."

Since 2.0

responseStatus Response status.

Format: Response status structure

Since 2.0

encKey Encrypted key to be used to decrypt
encPaymentData. You use your shared secret to
decrypt this key.

Format: Alphanumeric; maximum 128 characters

Example: "encKey":"..."

3-30 January 23, 2019

Visa Checkout JavaScript and Button Visa Checkout

Property Description

Since 2.0

encPaymentData Encrypted consumer and payment data that can be
used to process the transaction. You decrypt this
by first unwrapping the encKey value, then using
that unwrapped key to decrypt this value.

Note
For an example decrypted consumer
information payload.

Format: Alphanumeric; maximum 1024 characters

Example: "encPaymentData":"..."

Since 2.0

partialShippingAddress Partial shipping address of the consumer.

Format: Partial shipping address structure

Since 2.0

paymentMethodType Type of payment instrument. Present only if you
are enabled to receive tokens from Visa Checkout.

Format: It is one of the following values:

• PAN— Payload does not contain a tokenInfo
structure.

• TOKEN— Payload contains a tokenInfo
structure.

Since 5.4

vInitRequest Ignore this structure.

Related Content
Response Status

Partial Shipping Address

Response Status

Property Description

status HTTPS response status.

Format: Numeric

Since 2.0

code Internal subcode.

January 23, 2019 3-31

Visa Checkout Partial Shipping Address

Property Description

Format: Numeric

Since 2.0

severity Severity of the error.

Format: It is one of the following values:

• ERROR

• WARNING

Since 2.0

message Description of the error.

Format: Alphanumeric

Since 2.0

Related Content
Response to Payment Success Events (Parent Topic)

Partial Shipping Address

Property Description

countryCode Country code of the country where the purchase
should be shipped, such as US; useful for
calculating shipping costs.

Format: Alphanumeric; maximum 2 characters

Since 2.0

postalCode Postal code of the location where the purchase
should be shipped, if available; useful for
calculating shipping costs.

Format: Alphanumeric; maximum 128 characters

Since 2.0

Related Content
Response to Payment Success Events (Parent Topic)

3-32 January 23, 2019

Visa Checkout JavaScript and Button Visa Checkout

Response to Payment Cancelled Events

Property Description

callid Visa Checkout transaction ID that identifies the
cancelled payment request.

Format: Alphanumeric; maximum 48 characters

Example: "callid":"..."

Since 2.0

Response to Error Events

Property Description

status HTTPS response status.

Format: Numeric

Since 2.0

code Internal subcode.

Format: Numeric

Since 2.0

severity Severity of the error.

Format: It is one of the following values:

• ERROR

• WARNING

Since 2.0

message Description of the error.

Format: Alphanumeric

Since 2.0

Related Content
Example: Error Event Response

Example: Error Event Response

{
"responseStatus" : { "status" : 404,
"code" : "1010",
"severity" : "ERROR",
"message" : "CallId b9346ed5-08d1-44b2-be32-bbde5c4bf34f was not found."

January 23, 2019 3-33

Visa Checkout User Data Prefill Event Handler

}
}

Related Content
Response to Error Events (Parent Topic)

User Data Prefill Event Handler
You can prefill a consumer’s first name, last name, phone number, and email address in the
lightbox from your data for new Visa Checkout consumers. After being enabled by Visa
Checkout, you can set the enableUserDataPrefill parameter in V.init to true and
provide a V.on event handler to provide the consumer information; the event occurs when the
consumer accepts the prefill. Consumers are prompted to accept the prefill when they are new,
or when they are not recognized as existing Visa Checkout consumers, which can happen when
the Visa Checkout cookie is not present in the consumer’s browser.

Important
By enabling the prefill consumer information feature, merchants confirm that they have
provided all applicable disclosures and/or have obtained all applicable consent from each
consumer regarding any intended disclosures and uses of any consumer information to be
provided to Visa Checkout. The MSA (Merchant Service Agreement) needs to include language
that addresses any support for this feature. Contact your Visa Checkout representative for more
information.

From your event handler, you can specify data for any of the following fields; fields that are not
specified are not prefilled:

Field Description

userFirstName (Optional) Consumer's given (first) name.

Format: Alphabetic or the following characters:
spaces, ' (single quote), ` (back tick), ~ (tilde), .
(period), and - (hyphen); maximum 24 characters

userLastName (Optional) Consumer's surname (last name).

Format: Alphabetic or the following characters:
spaces, ' (single quote), ` (back tick), ~ (tilde), .
(period), and - (hyphen); maximum 24 characters

userEmail (Required) Valid email address for the consumer
making the payment.

Format: Alphanumeric, valid email address;
maximum 256 characters

userPhone (Optional) Valid mobile phone number for the
consumer making the payment; for future use.

Format: Numeric or hyphens, parentheses, period,
or plus sign, valid for the country; maximum 30
characters

Your event handler returns the fields that you want to prefill:

3-34 January 23, 2019

Visa Checkout JavaScript and Button Visa Checkout

V.on('pre-payment.user-data-prefill',function(){
return {

userFirstName: 'Jill',
userLastName: 'Consumer',
userEmail: '...',
userPhone: '...'

}
});

If the data is not readily available, you can return a promise, which Visa Checkout accepts if the
lightbox experience is not degraded by waiting. For example, if you need to query your
backend server to obtain the data you want to prefill, you can return a promise and then fetch
the data, as shown in the following example:

V.on('pre-payment.user-data-prefill',function(){
return new Promise(function(resolve, reject) {
// api call to get data and resolve it
fetch('https:your_endpoint')

.then(function(data) {
resolve({

userFirstName: data.your_source_for_userFirstName,
userLastName: data.your_source_for_userLastName,
userEmail: data.your_source_for_userEmail,
userPhone: data.your_source_for_userPhone

})
})
.catch(function(error){

reject(error);
});

});
});

Complete Visa Checkout Web Page HTML Example

You initialize the Visa Checkout library in the V.init event handler of your
onVisaCheckoutReady function with properties that identify the merchant implementing
the button, button characteristics and settings related to the behavior of the lightbox, and
payment request properties. You specify how to respond to events related to the lightbox
closing and the payment request in V.on event handlers.

Note
You must provide your API key when initializing the Visa Checkout JavaScript library.

The following example shows an HTML web page that loads the Visa Checkout library, defines
handlers for initialization and payment events, and creates a Visa Checkout button:

<html>
<head>
<script type="text/javascript">
function onVisaCheckoutReady() {

V.init({
apikey: "...",
encryptionKey: "...",

settings: {
locale: "en_US",
countryCode: "US",
displayName: "...Corp",

January 23, 2019 3-35

Visa Checkout Complete Visa Checkout Web Page HTML Example

websiteUrl: "www....Corp.com",
customerSupportUrl: "www....Corp.support.com",
enableUserDataPrefill:true,
shipping: {
acceptedRegions: ["US", "CA"],
collectShipping: "true"
},
payment: {
cardBrands: [
"VISA",
"MASTERCARD"],

acceptCanadianVisaDebit: "true",
billingCountries:["US","CA"]
},
review: {
message: "Merchant defined message",
buttonAction: "Continue"
},

dataLevel: "SUMMARY"
},
paymentRequest: {
merchantRequestId: "Merchant defined request ID",
currencyCode: "USD",
subtotal: "10.00",
shippingHandling: "2.00",
tax: "2.00",
discount: "1.00",
giftWrap: "2.00",
misc: "1.00",
total: "16.00",
description: "...corp Product",
orderId: "Merchant defined order ID",
promoCode: "Merchant defined promo code",
customData: {
"nvPair": [
{ "name": "customName1", "value": "customValue1" },
{ "name": "customName2", "value": "customValue2" }
]

}
}

}
);
V.on("payment.success", function(payment){document.write(JSON.stringify(payment)); });
V.on("payment.cancel", function (payment) { ... });
V.on("payment.error", function (payment, error) { ... });
V.on("pre-payment.user-data-prefill", function(){ ... });

}
</script>
</head>
<body>
<img alt="Visa Checkout" class="v-button" role="button"
src="https://sandbox.secure.checkout.visa.com/wallet-services-web/xo/button.png?
cardBrands=VISA,MASTERCARD,DISCOVER,AMEX"/>

<script type="text/javascript"
src="https://sandbox-assets.secure.checkout.visa.com/

checkout-widget/resources/js/integration/v1/sdk.js">
</script>
</body>
</html>

3-36 January 23, 2019

Visa Checkout JavaScript and Button Visa Checkout

Preselected Checkout Feature
The preselected checkout feature allows you to set the initial values for the consumer's card,
shipping address, and billing address, based on those used in a previous payment request,
identified by a call ID. This feature enables you to offer the consumer a way to change the card
or address before confirming a payment. If you retain call IDs, you can also use this feature in
other ways; for example, to establish a card on file for a future payment request.

To preselect the consumer's card, shipping address, and billing address for a payment:

1. Specify the call ID of a previous request in the referenceCallID attribute of the V.init
structure.

2. Invoke your onVisaCheckoutReady function to set these values and invoke the Visa
Checkout lightbox.

Consider the following example, which displays payment information on an order confirmation
page and contains an Edit with Visa Checkout link, which enables the consumer to change
the payment information:

The following example shows the source, which sets referenceCallID in the
onVisaCheckoutReady function and invokes the function through the SDK when the
consumer clicks the Edit with Visa Checkout link:

<head>
<script type="text/javascript">
function onVisaCheckoutReady() {
V.init({

apikey: “…",
referenceCallID: "554449457741154050”,
…

});
V.on("payment.success", function(payment)

{document.write(JSON.stringify(payment)); });
…
});

}
</script>
</head>
<body>
Edit with Visa Checkout
<script type="text/javascript"

January 23, 2019 3-37

Visa Checkout Preselected Checkout Feature

src="https://sandbox-assets.secure.checkout.visa.com/
checkout-widget/resources/js/integration/v1/sdk.js">

</script>
</body>

Note
Each payment.success event generates a new call ID.

3-38 January 23, 2019

Visa Checkout JavaScript and Button Visa Checkout

January 23, 2019 4-1

Mobile App Support 4
Summary of Mobile App Options
Visa Checkout provides SDKs that integrate Visa Checkout into native iOS and Android apps. It
also provides a hybrid SDK, which enables you to integrate your web app with biometric
authentication provided by iOS and Android devices.

Visa Checkout provides the following SDKs, which are available from the Visa Developer Center
at https://developer.visa.com:

• Visa Checkout SDK for iOS for native iOS apps
• Visa Checkout SDK for Android for native Android apps
• Visa Checkout Hybrid Mobile SDK for web apps using the Visa Checkout plugin for

biometric authentication
Documentation for each Visa Checkout mobile SDK is in the SDK.

You can use these SDKs or you can create a web view in your hybrid app to display Visa
Checkout assets.

Mobile App Examples

Related Content
iOS Web View Hybrid App

Android Web View Hybrid App

Optimizing the Checkout Flow for Mobile Browsers

iOS Web View Hybrid App

You can associate your website with an iOS web view. Your code must be self-contained,
meaning that it should not interact with your iOS hybrid app after it is loaded; all Visa
Checkout integration should be performed in the website.

The following example shows how to load the web view and associate it with your site:

import UIKit
import WebKit

class ViewController: UIViewController {
var webView: WKWebView!

override func viewDidLoad() {
super.viewDidLoad()
webView = WKWebView(frame: view.frame)
view.addSubview(webView)
let url = URL(string: "https://my_site.my_company.com/...")
let urlRequest = URLRequest(url: url!)
webView.load(urlRequest)

}
}

4-2 January 23, 2019

Mobile App Support Visa Checkout

If you cannot use a web kit view, you can load the web view as follows:

import UIKit

class ViewController: UIViewController {
@IBOutlet weak var webView: UIWebView!

override func viewDidLoad() {
super.viewDidLoad()
let url = URL(string: "https://my_site.my_company.com/...")
let urlRequest = URLRequest(url: url!)
webView.loadRequest(urlRequest)

}
}

Related Content
Mobile App Examples (Parent Topic)

Android Web View Hybrid App

You can associate your website with an Android web view. Your code must be self-contained,
meaning that it should not interact with your Android hybrid app after it is loaded; all Visa
Checkout integration should be performed in the website.

The following example shows how to create the web view and associate it with your site:

import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;
import android.webkit.WebView;

public class MainActivity extends AppCompatActivity {

@Override
protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
WebView webView = (WebView)findViewById(R.id.web_view);
webView.loadUrl("https://my_site.my_company.com/...");

}
}

Related Content
Mobile App Examples (Parent Topic)

Optimizing the Checkout Flow for Mobile Browsers

Visa Checkout is optimized for mobile browsers even if your checkout flow is not. Support is
provided for both iOS and Android devices. In order to allow for a mobile optimized Visa
Checkout experience, add the following <meta> tag to your HTML <head> block:

<html>
<head>
...
<meta name="viewport"
content="width=device-width, initial-scale=1.0, maximum-scale=1.0,

January 23, 2019 4-3

Visa Checkout Enabling Third-Party Cookies for Hybrid Apps

user-scalable=no" />
...
</head>

Related Content
Mobile App Examples (Parent Topic)

Enabling Third-Party Cookies for Hybrid Apps

To enable the display of a Visa Checkout button's associated card art and the Remember Me
feature when the Visa Checkout lightbox is invoked from a hybrid app, you must allow the
acceptance of third-party cookies. To accept third-party cookies, you must add code to your
hybrid app, as follows:

Related Content
Accepting Cookies in iOS Hybrid Apps

Accepting Cookies in Android Hybrid Apps

Accepting Cookies in iOS Hybrid Apps

[NSHTTPCookieStorage sharedHTTPCookieStorage].cookieAcceptPolicy
= NSHTTPCookieAcceptPolicyAlways;

Related Content
Enabling Third-Party Cookies for Hybrid Apps (Parent Topic)

Accepting Cookies in Android Hybrid Apps

if(Build.VERSION.SDK_INT >= 21) {
CookieManager.getInstance().setAcceptThirdPartyCookies(myWebView, true);
}

Related Content
Enabling Third-Party Cookies for Hybrid Apps (Parent Topic)

4-4 January 23, 2019

Mobile App Support Visa Checkout

January 23, 2019 5-1

Consumer Information 5
About Consumer Information
Consumer information is returned in JSON format. You must not rely on the position of
structures or fields in the payload as being fixed. Neither should you rely upon the existence of
fields, such as fields that are contextually inapplicable because they may not be returned. You
should consider using standard libraries to parse JSON objects. Consumer information is
available, either encrypted in a payload or as summary information from Get Payment Data.

Consumer Information

Field Description

externalClientId The partner's relationship ID for a merchant, or a
Visa Checkout-supplied ID if a partner did not
specify a value for externalClientId when
onboarding the merchant.

Format: String. Alphabetic, numeric, hyphens (-),
and underscores (_), e.g. spaces are not allowed;
maximum 100 characters

Example: "externalClientId":"123456"

paymentRequest Payment request information from the Visa
Checkout library initialization.

Format: A paymentRequest structure.

userData Consumer payment information.

Format: A userData structure.

creationTimeStamp Payment creation timestamp.

Format: UNIX Epoch timestamp, in milliseconds.

Example:
"creationTimeStamp":"1397847423768".

paymentInstrument Consumer's account information. Contents vary
depending on whether enablePANAccess was
set to true when the merchant was onboarded
and whether the value of dataLevel is FULL or
SUMMARY.

Note
No consumer information is provided if the
dataLevel is NONE.

Format: A paymentInstrument structure.

5-2 January 23, 2019

Consumer Information Visa Checkout

shippingAddress Shipping address information.

Format: An Address structure.

riskData Risk information.

Format: A riskData structure.

threeDS Verified by Visa (3-D Secure) information. (See 3–D
Secure Authentication Data Fields)

Format: A threeDS structure.

visaCheckoutGuest Guest Checkout. Do not use.

Format: It is the following value:

• false

Example: "visaCheckoutGuest":"false"

newUser Whenever a consumer-enrolls for the first time, the
value is true; otherwise, this field is not returned.

It is one of the following values:

• true - returns value for first-time user
• false - returns value for any user who is not a

first-time user

Format: A newUser structure.

walletInfo Wallet information.

Format: A walletInfo structure.

partialShippingAddress Partial shipping address.

Format: A partialShippingAddress structure.

paymentMethodType Type of payment instrument. Present only if you
are enabled to receive tokens from Visa Checkout.

Format: It is one of the following values:

• PAN— Payload does not contain a tokenInfo
structure.

• TOKEN— Payload contains a tokenInfo
structure.

Related Content
Payment Request

User Data

Payment Instrument Properties

Address

Risk Properties

January 23, 2019 5-3

Visa Checkout Payment Request

3–D Secure Authentication Data Fields

Wallet Info

Partial Shipping Address

Payment Request

Field Description

merchantRequestId Merchant's ID associated with the request. Visa
Checkout stores this value for your use as a
convenience.

Format: Alphanumeric; maximum 100 characters.

currencyCode
The currency with which to process the transaction.

Format: Currency codes must be uppercase; ISO
4217 standard alpha-3 code values.

Example: "currencyCode":"USD"

subtotal Subtotal of the payment.

Format: Numeric; maximum 9 digits before an
optional decimal point and 4 decimal digits.

Example: "subtotal":"9.00"

shippingHandling Total of shipping and handling charges in the
payment.

Format: Numeric; maximum 9 digits before an
optional decimal point and 4 decimal digits.

Example: "shippingHandling" : "3.00"

tax Total tax-related charges in the payment.

Format: Numeric; maximum 9 digits before an
optional decimal point and 4 decimal digits.

Example: "tax":"1.00"

discount Total of discounts related to the payment. If
provided, it is a positive value representing the
amount to be deducted from the total.

Format: Numeric; maximum 9 digits before an
optional decimal point and 4 decimal digits.

Example: "discount" : 2.50"

giftWrap Total gift-wrapping charges in the payment.

Format: Numeric; maximum 9 digits before an
optional decimal point and 4 decimal digits.

5-4 January 23, 2019

Consumer Information Visa Checkout

Example: "giftWrap" : "1.99"

misc Total uncategorized charges in the payment.

Format: Numeric; maximum 9 digits before an
optional decimal point and 4 decimal digits.

Example: "misc":"1.00"

total Total of the payment including all amounts.

Format: Numeric; maximum 9 digits before an
optional decimal point and 4 decimal digits.

Example: "total":"9.00"

description The description of the payment.

Format: Alphabetic characters, digits, spaces (),
periods (.), underscores (_), and hyphens (—);
maximum 100 characters.

orderId Merchant's order ID associated with the payment.

Format: Alphanumeric; maximum 100 characters.

promoCode (Optional) Promotion codes associated with the
payment.

Format: String. Alphabetic, numeric, characters,
space (), underscore (_), hyphen (—),
exclamation point (!), "at" sign (@), pound sign
or hash mark (#), dollar sign ($), percent sign (%
), asterisk (*), left/open parenthesis ((), right/close
parenthesis ()), and plus sign (+). Multiple
promotion codes are separated by a period (.);
maximum 100 characters.

Example: "promoCode": "17.15"

customData Merchant-supplied data, as name-value pairs.

Format: Alphanumeric; maximum 1024 characters.

Related Content
Consumer Information (Parent Topic)

User Data

Field Description

userFirstName Consumer's given (first) name.

January 23, 2019 5-5

Visa Checkout User Data

Format: Alphabetic or the following characters:
spaces, ' (single quote), ` (back tick), ~ (tilde), .
(period), and - (hyphen); maximum 256 characters.

Example: "userFirstName" : "Joe"

userLastName Consumer's surname (last name).

Format: Alphabetic or the following characters:
spaces, ' (single quote), ` (back tick), ~ (tilde), .
(period), and - (hyphen); maximum 256 characters.

Example: "userLastName" : "Tester"

userFullName Concatenation of consumer's first and last names.

Format: Alphabetic or the following characters:
spaces, ' (single quote), ` (back tick), ~ (tilde), .
(period), and - (hyphen); maximum 256 characters.

Example: "userFullName" : "Joe Tester"

userName User name.

Format: Alphanumeric, valid email address or
mobile phone number; maximum 256 characters.

Example: "userName" :
"testuser@mycompany.com"

encUserId Encoded user ID.

Format: Alphanumeric; maximum 100 characters.

Example: "encUserId" : "..."

userEmail Valid email address for the consumer making the
payment.

Format: Alphanumeric, valid email address;
maximum 256 characters.

Example: "userEmail" :
"testuser@mycompany.com"

5-6 January 23, 2019

Consumer Information Visa Checkout

userMobile Valid mobile phone number for the consumer
making the payment; for future use.

Format: Numeric or hyphens, parentheses, period,
or plus sign, valid for the country; maximum 30
characters.

Example: "userMobile" : "..."

userPersonalId Personal ID (Brazil only); it is the CPF (Cadastrado
de Pessoas Físicas) tax registration number. It is
only available if the merchant is configured by Visa
Checkout to receive full information, e.g.
onboarded with PAN access enabled.

Format: Numeric; maximum 11 digits.

Example: "userPersonalId":
"56453472856"

Related Content
Consumer Information (Parent Topic)

Payment Instrument Properties

Field Description

id Unique internal ID associated with the payment
instrument.

Format: Alphanumeric.

Example: "id" : "..."

Since 2.0

lastFourDigits Last 4 digits of the payment instrument.

Format: Numeric; maximum 4 digits.

Example: "lastFourDigits" : "4448"

Since 3.0

tokenInfo Token information; only available for token-
enabled payment instruments.

Format: A tokenInfo structure.

Since 3.4

cryptogramInfo Cryptogram information associated with the token;
only available for tokenized payment instruments
in which dataLevel=FULL.

Format: A cryptogramInfo structure.

Since 3.4

January 23, 2019 5-7

Visa Checkout Payment Instrument Properties

binSixDigits First 6 digits of account number-based payment
instrument.

Note
Not present for tokenized payment
instruments.

Format: Numeric; maximum 6 digits

Example: "binSixDigits" : "444444"

Since 3.0

accountNumber Account number associated with the payment
instrument, which is available only for account
number-based payment instruments. Additionally,
it is only available to merchants with permission to
request full information, e.g. onboarded with PAN
access; accountNumber is not present in
summary information.

Note
Not present for tokenized payment
instruments.

Format: Numeric; maximum 19 digits.

Example: "accountNumber" : "..."

Since 2.0

paymentType Kind of payment instrument.

Format: A paymentType structure.

Since 2.0

paymentAccountReference An ID that is assigned by Visa to provide an
association with a PAN and any tokens that are
related to a PAN.

Format: Alphanumeric; maximum 29 digits.

Example: "paymentAccountReference" :
"V0010013818052688164702673046"

billingAddress Billing address associated with the payment
instrument.

Format: A billingAddress structure.

Since 2.0

verificationStatus Visa Checkout verification status for the payment
instrument.

Format: It is one of the following values:

• VERIFIED

• NOT_VERIFIED

5-8 January 23, 2019

Consumer Information Visa Checkout

• CONSUMER_OVERRIDE"

Example: "verificationStatus" :
"VERIFIED"

Since 2.0

expired Whether the card has expired.

Format: It is one of the following values:

• true - Expired
• false - Not expired

Example: "expired" : "false"

Since 2.0

cardArts Card art information.

Format: A cardArts structure.

Since 2.0

issuerBid Issuer BID.

Format: Alphanumeric; maximum 100 characters.

Example: "issuerBid" : "14"

Since 2.0

nickName Nick name associated with the payment
instrument.

Format: Alphanumeric; maximum 140 characters.

Example: "nickName" : "Fav Visa"

Since 2.0

nameOnCard Name of the consumer on the card.

Format: Alphabetic or the following characters:
spaces, ' (single quote), ` (back tick), ~ (tilde), "
(double quote), . (period), and - (hyphen);
maximum 256 characters.

Example: "nameOnCard" : "John Tester"

Since 2.0

cardFirstName Consumer's first name on card.

Format: Alphanumeric; maximum 256 characters.

Example: "cardFirstName" : "John"

Since 2.9

cardLastName Consumer's last name on card.

Format: Alphanumeric; maximum 256 characters.

January 23, 2019 5-9

Visa Checkout Token Info Properties

Example: "cardLastName" : "Tester"

Since 2.9

expirationDate Payment instrument's expiration date.

Note
This expiration date is only provided for
account number-based payment instruments.
For tokenized payment instruments, the
tokenInfo structure contains the token's
expiration date.

Format: An expirationDate structure.

Since 2.0

riskData Risk information related to the transaction, if
available.

Format: A riskData structure.

Since 2.0

Related Content
Consumer Information (Parent Topic)

Token Info Properties

Cryptogram Info Properties

Payment Type Properties

Card Art

Expiration Date

Token Info Properties

Token information is only available for token-enabled payment instruments. You must be
configured by Visa Checkout to receive this information.

Field Description

token The token value associated with the payment
instrument. It is only available to merchants with
permission to request full information, e.g.
onboarded with PAN access; not present in
summary information.

Format: Numeric; maximum 16 digits

Example: "token" : "..."

Since 3.4

tokenRange First 9 digits of the token.

Format:Numeric; maximum 9 digits

5-10 January 23, 2019

Consumer Information Visa Checkout

Field Description

Example: "tokenRange" : "123444444"

Since 3.4

last4 Last 4 digits of the token.

Format:Numeric; maximum 4 digits

Example: "last4" : "1234"

Since 3.4

expirationDate Token's expiration date.

Format: expirationDate

Since 3.4

Related Content
Payment Instrument Properties (Parent Topic)

Cryptogram Info Properties

Cryptogram information is only available for token-enabled payment instruments. You must
be configured by Visa Checkout to receive this information.

Field Description

cryptogram Current cryptogram associated with the token. Visa
Checkout creates a new cryptogram via every payload
request with the Get Payment Data API.

Note
A token authentication verification value (TAVV)
cryptogram must adhere to the VisaNet requirements for
Field 126.9, which is 20 bytes long. The cryptogram must
be decoded into a 20–byte binary value before
submitting it to VisaNet.

Format: Alphanumeric

Example: "cryptogramInfo" : "..."

Since 3.4

eci An e-commerce indicator (ECI) represents a value to
indicate the authentication results of a consumer’s credit
card payment on a secure channel

Important
If you are using Verified by Visa (3–D Secure) with
tokens, you must provide the eciRaw value in the
threeDS structure to your processor, not this value.

Format: It returns the following 2–digit value:

January 23, 2019 5-11

Visa Checkout Cryptogram Info Properties

Field Description

• 07

Example: "eci" : "07"

Since 3.4

tokenCryptoType Kind of token, which is one of the following values:

• DTVV; valid for 24 hours
• TAVV; required for VisaNet Field 126.9

Example: "tokenCryptoType" : "TAVV"

Since 5.5

expirationTimestamp Date and time when the cryptogram expires, in
milliseconds

Format: ISO 8601 standard in the form of yyyy-mm-ddThh:
mm:ss:mmmZ

Example: "expirationTimestamp" : "2017-07-
22T07:07:59.000Z"

Since 5.5

Related Content
Payment Instrument Properties (Parent Topic)

5-12 January 23, 2019

Consumer Information Visa Checkout

Payment Type Properties

Field Description

cardBrand Brand of payment instrument.

Format: It is one of the following values:

• VISA

• MASTERCARD

• AMEX

• DISCOVER

• ELECTRON (Brazil only; since 3.9)
• ELO (Brazil only; since 3.9)

Example: "cardBrand" : "VISA"

Since 2.0

cardType Kind of card.

Format: It is one of the following values:

• CREDIT

• DEBIT

• CHARGE

• PREPAID

• DEFERRED DEBIT

• NONE

Example: "cardType" : "CREDIT"

Since 2.0

Related Content
Payment Instrument Properties (Parent Topic)

Card Art

Zero or more Card Art structures

January 23, 2019 5-13

Visa Checkout Expiration Date

Property Description

baseImageFileName URL to the card art.

Format: Alphanumeric, valid URL; maximum 100
characters

Important
The URL to the card art is provided for the sole
purpose of displaying the card with Visa
Checkout and for no other purpose.

Example: "baseImageFileName" : "..."

Since 2.0

height Height of art, in pixels.

Format: Numeric; value between 1 and 4096,
inclusive

Example: "height" : ...

Since 2.0

width Width of art, in pixels.

Format: Numeric; value between 1 and 4096,
inclusive

Example: "width" : ...

Since 2.0

Related Content
Payment Instrument Properties (Parent Topic)

Expiration Date

Field Description

month Expiration month of the payment instrument.

Format: The month in MM format, including leading
0 if necessary; from 01 to 12, inclusive.

Example: "month" : "09"

Since 3.0

year Expiration year of the payment instrument.

Format: The year in YYYY format.

Example: "year" : "2015"

Since 2.0

5-14 January 23, 2019

Consumer Information Visa Checkout

Related Content
Payment Instrument Properties (Parent Topic)

Address

The following information describes address payload fields, irrespective of country. For
country-specific formats, see the Visa Checkout Address Format by Country document.

Property Description

id Address ID

Note
Only available for shipping addresses

Format: Alphanumeric; maximum 36 characters

Example: "id":"..."

Since 2.0

verificationStatus Visa Checkout verification status of the address.

Note
Only available for shipping addresses

Format: It is one of the following values:

• VERIFIED

• NOT_VERIFIED

• CONSUMER_OVERRIDE

Example: "verificationStatus" :
"VERIFIED"

Since 2.0

personName Addressee's complete name.

Format: Alphanumeric; maximum 256 characters

Example: "personName" : "Test User"

Since 2.0

firstName Addressee's first name.

Format: Alphanumeric; maximum 256 characters

Example: "firstName" : "Test"

Since 2.9

lastName Addressee's last name.

Format: Alphanumeric; maximum 256 characters

Example: "lastName" : "User"

January 23, 2019 5-15

Visa Checkout Address

Property Description

Since 2.9

line1 First line of the address.

Format: Alphanumeric, which depends on the
country; maximum 140 characters. For country-
specific information, see Visa Checkout Address
Formats by Country.

Example: "line1" : "1 Main Street"

Since 2.0

streetNumber Street number in the first line of the address, if it
exists. It is used only for addresses in Mexico and
Brazil.

Format: Alphanumeric; maximum 10 characters

Example: "streetNumber": "1738"

Since 3.9

streetName Street name in the first line of the address, if it
exists. It is used only for addresses in Mexico and
Brazil.

Format: Alphanumeric, which depends on the
country; maximum 140 characters. For country-
specific information, see Visa Checkout Address
Formats by Country.

Example: "streetName": "Haddock Lobo"

Since 3.9

additionalLocation Additional location information in the first line of
the address, if it exists. It is used only for addresses
in Mexico and Brazil.

Format: Alphanumeric; maximum 10 characters

Example: "additionalLocation": "Apt 4"

Since 3.9

neighborhood Neighborhood or colony. It is used only for
addresses in Mexico.

Format: Alphanumeric; maximum 69 characters

Example: "neighborhood" : "..."

Since 4.4

county Delegation or municipality. It is used only for
addresses in Mexico.

Format: Alphanumeric; maximum 69 characters

5-16 January 23, 2019

Consumer Information Visa Checkout

Property Description

Example: "county" : "..."

Since 4.4

pointOfReference Point of reference. It is used only for addresses in
Mexico.

Format: Alphanumeric; maximum 140 characters

Example: "pointOfReference" : "..."

Since 4.4

line2 Second line of the address, if it exists.

Format: Alphanumeric, which depends on the
country; maximum 140 characters. For country-
specific information, see Visa Checkout Address
Formats by Country.

Example: "line2" : "..."

Since 2.0

line3 Third line of the address, if it exists. It is used only
to hold the name of the suburb for New Zealand
addresses.

Format: Alphanumeric, which depends on the
country; maximum 140 characters. For country-
specific information, see Visa Checkout Address
Formats by Country.

Since 2.7

city City associated with the address.

Format: Alphanumeric; maximum 100 characters

Example: "city" : "San Francisco"

Since 2.0

stateProvinceCode State or province code associated with the address
in US, CA, or AU, or the county name for IE.

Must be a valid 2-character code for US and CA
and a valid 3-character code for AU.

Format: Alphanumeric; maximum 100 characters

Example: "stateProvinceCode" : "CA"

Since 2.0

postalCode Postal code associated with the address, such as a
zip code.

Format: Depends on stateProvinceCode,
maximum 100 characters:

January 23, 2019 5-17

Visa Checkout Address

Property Description

• USmust be 5 digits
• CAmust be 6 characters separated by a space

or a hyphen, e.g. A0A 0A0
• AUmust be 4 digits
• NZmust be 4 digits

Other postal codes must be valid for their
respective countries, if a code exists.

Example: "postalCode" : "94301"

Since 2.0

countryCode Country code associated with the address.

Format: One of the following ISO-3166-1 alpha-2
standard codes:

• AR - Argentina (Since 2.7)
• AU - Australia
• BR - Brazil (Since 2.7)
• CA - Canada
• CL - Chile (Since 2.9)
• CN - China (Since 2.9)
• CO - Colombia (Since 2.9)
• FR - France (Since 4.3)
• HK - Hong Kong (Since 2.9)
• IN - India (Since 4.6)
• IE - Ireland (Since 4.3)
• KW - Kuwait (Since 5.1)
• MY - Malaysia (Since 2.9)
• MX - Mexico (Since 2.9)
• NZ - New Zealand (Since 2.9)
• PE - Peru (Since 2.9)
• PL - Poland (Since 4.3)
• QA - Qatar (Since 5.1)
• SA - Saudi Arabia (Since 5.1)
• SG - Singapore
• ZA - South Africa (Since 2.9)
• ES - Spain (Since 4.3)
• UA - Ukraine (Since 5.1)
• AE - United Arab Emirates (Since 2.9)

5-18 January 23, 2019

Consumer Information Visa Checkout

Property Description

• GB - United Kingdom (Since 4.3)
• US - United States

Example: "countryCode" : "US"

phone Phone number associated with the address.

Format: Numeric or hyphens, parentheses, period,
or plus sign, valid for the country; maximum 30
characters

Example: "phone" : "4155551212"

Since 2.0

default Whether this is the default address.

Format: It is one of the following Boolean values:

• true

• false

Example: "default" : false

Since 2.5

Related Content
Consumer Information (Parent Topic)

January 23, 2019 5-19

Visa Checkout Risk Properties

Risk Properties

Property Description

advice Not currently available. Risk advice for use with
your fraud model.

Important
The returned value indicates a category of risk
and is strictly advisory. Its value should only be
used in conjunction with your own experience,
models, and risk tolerance to determine
whether to complete the transaction.

Format: It is one of the following values:

• LOW - Lower than a medium level of risk
anticipated

• MEDIUM - Medium level of risk anticipated
• HIGH - Higher than a medium level of risk

anticipated
• UNAVAILABLE - No information available

Example: "advice" : "LOW"

Since 2.0

score Risk score; 0 indicates unavailable. Not currently
available; always 0. The higher the score, the
higher the perceived risk.

Important
The returned value indicates a relative value of
risk and is strictly advisory. Use this value in
conjunction with your own experience, models,
and risk tolerance to determine whether to
complete the transaction.

Format: Numeric; whole value between 0 and 99,
inclusive

Example: "score" : "0"

Since 2.0

avsResponseCode Address verification system response code.

Note
Although AVS is verified when a card is added
to the Visa Checkout account, verification
information may not always be available in the
consumer information payload; in which case,
‘unavailable (0)’ is returned for the value.

Format: Alphanumeric

Example: "avsResponseCode" : "V"

Since 2.0

5-20 January 23, 2019

Consumer Information Visa Checkout

Property Description

cvvResponseCode Card validation verification system response code.

Note
Although a card security code, e.g. CVV2, is
verified when a card is added to the Visa
Checkout account, verification information may
not always be available in the consumer
information payload; in which case, ‘unavailable
(0)’ is returned for the value.

Format: Alphanumeric

Example: "cvvResponseCode" : "M"

Since 2.0

ageOfAccount Number of days since the Visa Checkout account
was created, if applicable. You can use it for fraud
evaluation; it may not be used for any secondary
purpose except as permitted under your Visa
Checkout services agreement or with consumer
consent.

Format: Numeric

Example: "ageOfAccount" : 300

Since 2.8

firstUseAuthenticated Whether a payment instrument has previously
been authenticated during first use in Visa
Checkout. This field only appears for consumers in
designated countries.

Format: It is one of the following Boolean values:

• true - The payment instrument has previously
been authenticated during first use in Visa
Checkout.

• false - The payment instrument has not been
authenticated during first use in Visa Checkout.

Example: "firstUseAuthenticated" : false

Since 5.1

Related Content
Consumer Information (Parent Topic)

3–D Secure Authentication Data Fields

Fields are returned in a threeDS structure, which is typically available when the merchant has
been configured to use 3-D Secure (Verified by Visa); however, the structure also can be
returned on first use of a Visa (Verified by Visa), Mastercard (SecureCode) card, or American
Express (SafeKey) by consumers for configured merchants in designated countries, regardless

January 23, 2019 5-21

Visa Checkout 3–D Secure Authentication Data Fields

of whether 3-D Secure is active. If any field is returned, all fields are returned; however, any
field can be empty.

Important
You must provide some or all of these fields in the authorization message to your processor.
Consult with your processor about the fields and values to include in the authorization message.

Field Description

eciRaw A brand-specific e-commerce indicator (ECI); for
example, a successful authentication of a Visa card
returns 05 for eciRaw.

Important
If you are using Verified by Visa (3–D Secure)
with tokens, you must provide the eciRaw
value to your processor, not the eci value in
the the cryptogramInfo structure.

Format: One of the following values:

• 00 - Mastercard (on consumer first use in
Europe only)

• 01 - Mastercard (on consumer first use in
Europe only)

• 02 - Mastercard (on consumer first use in
Europe only)

• 05 - Visa and American Express (American
Express on consumer first use in Europe only)

• 06 - Visa and American Express (American
Express on consumer first use in Europe only)

• 07 - Visa and American Express (American
Express on consumer first use in Europe only)

Example: "eciRaw" : "05"

Since 2.7

cavv Encoded Cardholder Authentication Verification
Value or Authentication Verification Value (AVV);
returned only for Verified by Visa transactions. This
value will be encoded according to the merchant's
configuration using either Base64 or Hex encoding.
It should be included in the payment
authentication request.

Format: Alphanumeric; maximum 48 characters

Example: "cavv" : "..."

Since 2.7

veresEnrolled Whether the card holder is enrolled in Verified by
Visa and the card issuing bank is participating in
Verified by Visa. Only a value of Y indicates
authentication eligibility.

5-22 January 23, 2019

Consumer Information Visa Checkout

Format: It is one of the following values:

• Y - Enrolled
• N - Not enrolled
• B - Authentication bypassed
• U - Authentication unavailable

Example: "veresEnrolled" : "U"

Since 2.7

veresTimestamp VERes response timestamp in Coordinated
Universal Time (UTC), also known as Zulu time.

Format: ISO 8601 standard in the form of yyyy-
mm-ddThh:mm:ss:mmmZ.

Example: "veresTimestamp":"2014-12-
29T18:34:45.489Z"

Since 2.7

paresStatus Whether the transaction was successfully
authenticated.

Format: It is one of the following values:

• Y - Authenticated
• N - Not authenticated
• U - Authentication could not be completed
• A - Successful attempts transaction

Example: "paresStatus" : "U"

Since 2.7

paresTimestamp PARes response timestamp in Coordinated
Universal Time (UTC), also known as Zulu time.

Format: ISO 8601 standard in the form of yyyy-
mm-ddThh:mm:ss:mmmZ.

Example: "paresTimestamp":"2014-12-
29T18:37:07.413Z"

Since 2.7

January 23, 2019 5-23

Visa Checkout Wallet Info

Whether the PARes has been validated successfully.

Format: It is one of the following values:

• Y - Indicates that the signature of the PARes has
been validated successfully.

• N - Indicates that the PARes could not be
validated.

Example: "signatureVerification" : "Y"

Since 3.5

xId Gateway or processor's authentication transaction
ID, if available. This value will be encoded according
to the merchant's configuration using either
Base64 or Hex encoding. It should be included in
the payment authorization request.

Format: Alphanumeric; maximum 40 characters.

Example: "xId":"..."

Since 2.7

Related Content
Consumer Information (Parent Topic)

Wallet Info

Field Description

walletName The pay wallet indicator.

Format: It is one of the following values:

• SAMSUNG_PAY

• ANDRIOD_PAY

• VISA_CHECKOUT

Example: "walletName":"VISA_CHECKOUT"

Since 5.6

Related Content
Consumer Information (Parent Topic)

5-24 January 23, 2019

Consumer Information Visa Checkout

Partial Shipping Address

Field Description

countryCode Country code of the country where an item should
be shipped, such as US; useful for calculating
shipping costs.

Format: One of the following ISO-3166-1 alpha-2
standard codes:

• AR - Argentina (Since 2.7)
• AU - Australia
• BR - Brazil (Since 2.7)
• CA - Canada
• CL - Chile (Since 2.9)
• CN - China (Since 2.9)
• CO - Colombia (Since 2.9)
• FR - France (Since 4.3)
• HK - Hong Kong (Since 2.9)
• IN - India (Since 4.6)
• IE - Ireland (Since 4.3)
• KW - Kuwait (Since 5.1)
• MY - Malaysia (Since 2.9)
• MX - Mexico (Since 2.9)
• NZ - New Zealand (Since 2.9)
• PE - Peru (Since 2.9)
• PL - Poland (Since 4.3)
• QA - Qatar (Since 5.1)
• SA - Saudi Arabia (Since 5.1)
• SG - Singapore
• ZA - South Africa (Since 2.9)
• ES - Spain (Since 4.3)
• UA - Ukraine (Since 5.1)
• AE - United Arab Emirates (Since 2.9)
• GB - United Kingdom (Since 4.3)
• US - United States

Since 2.0

postalCode Postal code of the location where an item should
be shipped, if available; useful for calculating
shipping costs.

January 23, 2019 5-25

Visa Checkout Partial Shipping Address

Field Description

Format: Depends on countryCode, maximum 7
characters:

• USmust be 5 digits
• CAmust be 6 characters separated by a space

or a hyphen, e.g., A0A 0A0
• AUmust be 4 digits

Since 2.0

Related Content
Consumer Information (Parent Topic)

5-26 January 23, 2019

Consumer Information Visa Checkout

January 23, 2019 6-1

Get Payment Data 6
Get Payment Data Summary

Call the payment/data resource path at the appropriate endpoint to obtain information
about the Visa Checkout transaction.

This API returns the same consumer information that is returned by the payment.success
event in the frontend; it is provided as a convenience if you want your backend software to
process the data.

Notes

1. The difference between full and summary information is whether or not the full account
number is returned; if it is not returned, the information is summary. Full information is
encrypted because it contains the account number. Summary information is not encrypted.

2. You can call payment/datamultiple times for a callId, up to the time the call ID expires
if an expiration is set; the data may change between calls.

3. By default, the callId does not expire. You can request an expiration for a specified
period, in days; however, it should be greater than the merchant's session timeout and, if
storing the call ID for future use, it should be greater than the anticipated last-use date. Do
not request an expiration if you accept tokenized payments.

4. A partner can specify the merchant ID, which was assigned as the external client ID
(externalClientId), and the callId to retrieve payment data on behalf of their
merchant. The partner's API key is used to specify the caller.

5. Merchants who save the CallId on file and invoke the GetPaymentData API receive the
latest PAN updates that the VAU has completed.

Get Payment Data Request

Path and Endpoints

Resource Path: payment/data/{callId}

Complete endpoint:

Sandbox:

https://sandbox.api.visa.com/wallet-services-web/payment/data/{callId}
?apikey=key&encryptionKey=encryptionKey&dataLevel=level&externalClientId=id

Live:

https://api.com/wallet-services-web/payment/data/{callId}
?apikey=key&encryptionKey=encryptionKey&dataLevel=level&externalClientId=id

6-2 January 23, 2019

Get Payment Data Visa Checkout

Parameter Description

{callId} The call ID that identifies the transaction.

Format: Alphanumeric

Since 2.0

Method

GET

January 23, 2019 6-3

Visa Checkout Required Headers

Required Headers

Header Description

x-pay-token A token identifying the transaction and its
contents.

Format: Alphanumeric; maximum 100 characters in
the form of xv2:UTC_Timestamp:HMAC-
SHA256_hash, where

• UTC_Timestamp is a UNIX Epoch timestamp
• HMAC-SHA256_hash is an HMAC-SHA256 hash

using the shared secret associated with your
API key and the following unseparated items:

1. Timestamp from the transaction; exactly the
same as UNIX_UTC_Timestamp

2. Resource path (API name)
3. This HTTPS request's query string, if it exists

Note
To create the query string, concatenate
all query string components (names and
values) as UTF-8 characters, which are
URL-encoded per RFC 3986. Hex
characters must be uppercase. Multiple
parameters must be sorted using
lexicographic byte ordering and
separated from each other by an
ampersand (&) character (ASCII code
38). Parameter names are separated
from their values by the = character
(ASCII character 61), which must be
present even if the value is empty.
“Unreserved" characters specified in
Section 2.3 of RFC 3986 , including dash
-, dot ., underscore _, and tilde ~
should not be URL-encoded.

4. Complete request body, when a request
body exists

Example: x-pay-token: xv2:1440199445:
HMAC-SHA256_hash result

Since 6.3

Accept Acceptable response format.

Format:Must include the following value:

application/json

application/xml

Example: Accept: application/json

Example: Accept: application/xml

Since 2.0

6-4 January 23, 2019

Get Payment Data Visa Checkout

Header Description

Content-Type Format of the content.

Format:Must include the following value:

application/json

application/xml

Example: Content-Type: application/json

Example: Content-Type: application/xml

Since 2.0

Query Parameters

Parameter Description

apikey (Required) Public API key, which is different than
the shared secret.

Format: Alphanumeric; maximum 49 characters

Example: apikey=...

Since 2.0

encryptionKey Visa Checkout encrypts data in the consumer
information payload using the shared secret
associated with this encryption key.

Format: Alphanumeric; maximum 49 characters

Example: encryptionKey=...

Since 6.3

January 23, 2019 6-5

Visa Checkout Get Payment Data Response

dataLevel (Optional)Whether the response should include
summary information or full information. This value
overrides the value in your external profile, if it is
set. When onboarded by a partner, the
enablePANAccess field of the onboarding API
determines the default value for dataLevel. If
enablePANAccess is true when the merchant is
onboarded, the default dataLevel is FULL;
otherwise, the default dataLevel is SUMMARY. For
information about the enablePANAccess field in
the onboarding API, see the Client API Reference,
Partner Edition.

Format: It is one of the following values:

• SUMMARY - Summary information
• FULL - Full information, which is only available

if you are configured to receive it

Since 2.0

externalClientId (Optional) Partner's ID for the merchant receiving
the payment. A partner must set this value when
obtaining a consumer information payload on
behalf of their merchant; merchants should not
specify this value.

Format: Alphabetic, numeric, hyphens (-), and
underscores (_), e.g., spaces are not allowed;
maximum 100 characters

Since 4.4

Get Payment Data Response

The response properties depend on whether full or summary information was requested and, if
full information was requested, whether your Visa Checkout permissions allow full information
to be included in the response. If full information is permitted and requested, you receive a
response that includes encrypted payment information, which you must decrypt to obtain the
full payment information. If you request summary information, you receive summary payment
information, which is not encrypted.

Note
Unencrypted summary payment information is exactly the same as decrypted full payment
information, except that the accountNumber property is not returned.

Related Content
Full Payment Information Before Decryption

6-6 January 23, 2019

Get Payment Data Visa Checkout

Full Payment Information Before Decryption

Field Description

encKey Encrypted key to be used to decrypt
encPaymentData. You use your shared secret to
decrypt this key.

Format: Alphanumeric; maximum 128 characters

Example: "encKey":"..."

Since 2.0

encPaymentData Encrypted consumer data that can be used to
process the transaction. You decrypt this by first
unwrapping the encKey value, then using that
unwrapped key to decrypt this value.

Format: Alphanumeric

Example: "encPaymentData":"..."

Since 2.0

partialShippingAddress Partial shipping address; useful for shipping
calculations.

Since 2.0

paymentMethodType Type of payment instrument. Present only if you
are enabled to receive tokens from Visa Checkout.

Format: It is one of the following values:

• PAN— Payload does not contain a tokenInfo
structure.

• TOKEN— Payload contains a tokenInfo
structure.

Since 5.4

Related Content
Get Payment Data Response (Parent Topic)

Partial Shipping Address

January 23, 2019 6-7

Visa Checkout Partial Shipping Address

Partial Shipping Address

Field Description

countryCode Country code of the country where an item should
be shipped, such as US; useful for calculating
shipping costs.

Format: One of the following ISO-3166-1 alpha-2
standard codes:

• AR - Argentina (Since 2.7)
• AU - Australia
• BR - Brazil (Since 2.7)
• CA - Canada
• CL - Chile (Since 2.9)
• CN - China (Since 2.9)
• CO - Colombia (Since 2.9)
• FR - France (Since 4.3)
• HK - Hong Kong (Since 2.9)
• IN - India (Since 4.6)
• IE - Ireland (Since 4.3)
• KW - Kuwait (Since 5.1)
• MY - Malaysia (Since 2.9)
• MX - Mexico (Since 2.9)
• NZ - New Zealand (Since 2.9)
• PE - Peru (Since 2.9)
• PL - Poland (Since 4.3)
• QA - Qatar (Since 5.1)
• SA - Saudi Arabia (Since 5.1)
• SG - Singapore
• ZA - South Africa (Since 2.9)
• ES - Spain (Since 4.3)
• UA - Ukraine (Since 5.1)
• AE - United Arab Emirates (Since 2.9)
• GB - United Kingdom (Since 4.3)
• US - United States

Since 2.0

postalCode Postal code of the location where an item should
be shipped, if available; useful for calculating
shipping costs.

6-8 January 23, 2019

Get Payment Data Visa Checkout

Field Description

Format: Depends on countryCode, maximum 7
characters:

• USmust be 5 digits
• CAmust be 6 characters separated by a space

or a hyphen, e.g., A0A 0A0
• AUmust be 4 digits

Since 2.0

Related Content
Full Payment Information Before Decryption (Parent Topic)

Get Payment Data Error Response

Response Status

Property Description

status HTTPS response status.

Format: Numeric

Since 2.0

code Internal subcode.

Format: Numeric

Since 2.0

severity Severity of the error.

Format: It is one of the following values:

• ERROR

• WARNING

Since 2.0

message Description of the error.

Format: Alphanumeric

Since 2.0

Example

...
"responseStatus" : {
"status" : 200,
"code" : 1017,

January 23, 2019 6-9

Visa Checkout Get Payment Data Errors

"severity" : "WARNING",
"message" : "Requested data access level [FULL] is more detailed
than merchant profile level [SUMMARY], assuming the latter."

},
...

Get Payment Data Errors

Status Code Description

400 1015 Invalid request data; a required field is either missing or
invalid

400 1035 Shipping region is not accepted by the merchant.

401 1033 The requested data access level (dataLevel) is invalid.

403 1017 The API key used in the operation is not authorized for the
requested action; ensure that the API key corresponds to the
call ID

403 1079 externalClientId request parameter does not match
externalClientId in payload. Verify the request
externalClientId and callId.

403 None x-pay-token header missing or invalid, or API key is missing
or invalid

403 1058 Customer's account is locked.

403 1059 Customer's account is closed.

403 1073 Further operations on the card are not allowed.

404 1010 API key or call ID not found, or data referenced by the API key
or call ID is invalid or not available.

404 1065 Expired Call ID

404 1076 The token-enabled card is not found; it may be deleted

409 1074 Invalid token request

Note
Other errors are internal.

6-10 January 23, 2019

Get Payment Data Visa Checkout

Get Payment Data Examples

Get Summary Payment Data Success Example—Merchant

JSON Request Including Headers

GET
https://sandbox.secure.checkout.visa.com/wallet-services-web/payment/data/03e...
?apikey=...&dataLevel=SUMMARY
Accept: application/json
X-PAY-TOKEN: X:1397847496:...

Related Content
JSON Response—Account Number-Based Summary Payment Instrument

JSON Response—Token-Enabled Summary Payment Instrument

JSON Response—Account Number-Based Summary Payment Instrument

{
"paymentRequest" : {
"customData" : {
"nvPair" : [
{
"name" : "customName1",
"value" : "customValue1"

},
{
"name" : "customName2",
"value" : "customValue2"

}
]

},
"merchantRequestId" : "898",
"currencyCode" : "USD",
"subtotal" : "80",
"shippingHandling" : "5",
"tax" : "5",
"discount" : "5",
"giftWrap" : "10",
"misc" : "5",
"total" : "100",
"orderId" : "testorderID",
"promoCode" : "testCampaignId"
},
"userData" : {
"userFirstName" : "Checkout",
"userLastName" : "Team",
"userFullName" : "Checkout Team",
"userName" : "7084410557",
"userEmail" : "Checkout094192@gmail.com",
"encUserId" : "..."
},
"creationTimeStamp" : 1397847423768,
"paymentInstrument" : {
"id" : "...",

January 23, 2019 6-11

Visa Checkout JSON Response—Account Number-Based Summary Payment Instrument

"lastFourDigits" : "1221",
"binSixDigits" : "371449",
"paymentType" : {
"cardBrand" : "VISA",
"cardType" : "CREDIT"
},
"billingAddress" : {
"personName" : "Joe Tester",
"firstName" : "Joe",
"lastName" : "Tester",
"line1" : "...",
"city" : "Foster City",
"stateProvinceCode" : "CA",
"postalCode" : "94404",
"countryCode" : "US"
},
"verificationStatus" : "VERIFIED",
"expired" : false,
"cardArts" : {
"cardArt" : [
{
"baseImageFileName" : "https://....png",
"height" : 50,
"width" : 77
}

]
},
"issuerBid" : "null",
"nickName" : "...",
"nameOnCard" : "Joe Tester",
"cardFirstName" : "Joe",
"cardLastName" : "Tester",
"expirationDate" : {
"month" : "10",
"year" : "2015"
}

},
"shippingAddress" : {
"id" : "...=",
"verificationStatus" : "NOT_VERIFIED",
"personName" : "Joe Tester",
"firstName" : "Joe",
"lastName" : "Tester",
"line1" : "...",
"city" : "Foster City",
"stateProvinceCode" : "CA",
"postalCode" : "94404",
"countryCode" : "US"

},
"riskData" : {
"advice" : "Unavailable",
"score" : 0,
"avsResponseCode" : "Y",
"cvvResponseCode" : "M"

},
"visaCheckoutGuest": false,
"walletInfo": {

"walletName": "VISA_CHECKOUT"
},

6-12 January 23, 2019

Get Payment Data Visa Checkout

"newUser": true,
"partialShippingAddress" : {
"countryCode" : "US",
"postalCode" : "94404"
},
"paymentMethodType": "PAN"

}

Related Content
JSON Request Including Headers (Parent Topic)

JSON Response—Token-Enabled Summary Payment Instrument

{
"paymentRequest" : {
"customData" : {
"nvPair" : [
{
"name" : "customName1",
"value" : "customValue1"

},
{
"name" : "customName2",
"value" : "customValue2"

}
]

},
"merchantRequestId" : "898",
"currencyCode" : "USD",
"subtotal" : "80",
"shippingHandling" : "5",
"tax" : "5",
"discount" : "5",
"giftWrap" : "10",
"misc" : "5",
"total" : "100",
"orderId" : "testorderID",
"promoCode" : "testCampaignId"
},
"userData" : {
"userFirstName" : "Checkout",
"userLastName" : "Team",
"userFullName" : "Checkout Team",
"userName" : "7084410557",
"userEmail" : "Checkout094192@gmail.com",
"encUserId" : "..."
},
"creationTimeStamp" : 1441931603973,
"paymentInstrument" : {
"id" : "...",
"lastFourDigits" : "4684",
"tokenInfo" : {

"tokenRange" : "405954033",
"last4" : "0206",
"expirationDate" : {

"month" : "10",
"year" : "2018"

January 23, 2019 6-13

Visa Checkout JSON Response—Token-Enabled Summary Payment Instrument

}
},
"paymentType" : {
"cardBrand" : "VISA",
"cardType" : "CREDIT"
},
"paymentAccountReference": "V001...",
"billingAddress" : {
"personName" : "Joe Tester",
"firstName" : "Joe",
"lastName" : "Tester",
"line1" : "...",
"city" : "Foster City",
"stateProvinceCode" : "CA",
"postalCode" : "94404",
"countryCode" : "US"
"phone" : "6505551212",
"default": false
},
"verificationStatus" : "VERIFIED",
"expired" : false,
"cardArts" : {
"cardArt" : [
{
"baseImageFileName" : "https://....png",
"height" : 50,
"width" : 77
}

]
},
"issuerBid" : "null",
"nickName" : "...",
"nameOnCard" : "Joe Tester",
"cardFirstName" : "Joe",
"cardLastName" : "Tester",

},
"shippingAddress" : {
"id" : "...=",
"verificationStatus" : "NOT_VERIFIED",
"personName" : "Joe Tester",
"firstName" : "Joe",
"lastName" : "Tester",
"line1" : "...",
"city" : "Foster City",
"stateProvinceCode" : "CA",
"postalCode" : "94404",
"countryCode" : "US"
"phone" : "6505551212",
"default": false

},
"riskData" : {
"advice" : "Unavailable",
"score" : 0,
"avsResponseCode" : "Y",
"cvvResponseCode" : "M"

},
"visaCheckoutGuest": false,
"walletInfo": {

6-14 January 23, 2019

Get Payment Data Visa Checkout

"walletName": "VISA_CHECKOUT"
},
"partialShippingAddress" : {
"countryCode" : "US",
"postalCode" : "94404"
},
"paymentMethodType": "TOKEN"

}

Related Content
JSON Request Including Headers (Parent Topic)

XML Request Including Headers

GET
https://sandbox.secure.checkout.visa.com/wallet-services-web/payment/data/03e...
?apikey=...&dataLevel=SUMMARY
Accept: application/xml
X-PAY-TOKEN: X:1397847496:...

Related Content
XML Response—Account Number-Based Summary Payment Instrument

XML Response—Token-Enabled Summary Payment Instrument

XML Response—Account Number-Based Summary Payment Instrument

<?xml version="1.0" encoding="UTF-8"?>
<ns2:getPaymentDataResponse
...
<partialShippingAddress>
<countryCode>US</countryCode>
<postalCode>94404</postalCode>
</partialShippingAddress>
<paymentMethodType>PAN</paymentMethodType>
<ns2:paymentRequest>
<customData>
<nvPair>
<name>customName1</name>
<value>customValue1</value>
</nvPair>
<nvPair>
<name>customName2</name>
<value>customValue2</value>
</nvPair>

</customData>
<merchantRequestId>898</merchantRequestId>
<currencyCode>USD</currencyCode>
<subtotal>80</subtotal>
<shippingHandling>5</shippingHandling>
<tax>5</tax>
<discount>5</discount>
<giftWrap>10</giftWrap>
<misc>5</misc>
<total>100</total>
<orderId>testorderID</orderId>

January 23, 2019 6-15

Visa Checkout XML Response—Account Number-Based Summary Payment Instrument

<promoCode>testCampaignId</promoCode>
</ns2:paymentRequest>
<ns2:userData>
<ns2:userFirstName>Checkout</ns2:userFirstName>
<ns2:userLastName>Team</ns2:userLastName>
<ns2:userFullName>Checkout Team</ns2:userFullName>
<ns2:userName>7084410557</ns2:userName>
<ns2:userEmail>Checkout094192@gmail.com</ns2:userEmail>
<ns2:encUserId>...</ns2:encUserId>

</ns2:userData>
<ns2:creationTimeStamp>2014-04-18T18:57:03.768Z</ns2:creationTimeStamp>
<ns2:paymentInstrument>
<nickName>...</nickName>
<nameOnCard>...</nameOnCard>
<cardFirstName>...</cardFirstName>
<cardLastName>...</cardLastName>
<expirationDate>
<month>10</month>
<year>2015</year>
</expirationDate>
<id>...</id>
<lastFourDigits>1221</lastFourDigits>
<binSixDigits>371449</binSixDigits>
<paymentType>
<cardBrand>VISA</cardBrand>
<cardType>CREDIT</cardType>
</paymentType>
<billingAddress>
<personName>...</personName>
<firstName>...</firstName>
<lastName>...</lastName>
<line1>...</line1>
<city>Foster City</city>
<stateProvinceCode>CA</stateProvinceCode>
<postalCode>94404</postalCode>
<countryCode>US</countryCode>
<phone>6505551212</phone>
<default>false</default>
</billingAddress>
<verificationStatus>VERIFIED</verificationStatus>
<expired>false</expired>
<cardArts>
<cardArt>
<baseImageFileName>https://....png</baseImageFileName>
<height>50</height>
<width>77</width>

</cardArt>
</cardArts>
<issuerBid>null</issuerBid>

</ns2:paymentInstrument>
<ns2:shippingAddress>
<personName>...</personName>
<firstName>...</firstName>
<lastName>...</lastName>
<line1>...</line1>
<city>Foster City</city>
<stateProvinceCode>CA</stateProvinceCode>
<postalCode>94404</postalCode>
<countryCode>US</countryCode>

6-16 January 23, 2019

Get Payment Data Visa Checkout

<phone>6505551212</phone>
<default>false</default>
<id>...</id>
<verificationStatus>NOT_VERIFIED</verificationStatus>
</ns2:shippingAddress>
<ns2:riskData>
<advice>Unavailable</advice>
<score>0</score>
<avsResponseCode>Y</avsResponseCode>
<cvvResponseCode>M</cvvResponseCode>
</ns2:riskData>
</ns2:getPaymentDataResponse>

Related Content
XML Request Including Headers (Parent Topic)

XML Response—Token-Enabled Summary Payment Instrument

<?xml version="1.0" encoding="UTF-8"?>
<ns2:getPaymentDataResponse
...
<partialShippingAddress>
<countryCode>US</countryCode>
<postalCode>94404</postalCode>
</partialShippingAddress>
<paymentMethodType>TOKEN</paymentMethodType>
<ns2:paymentRequest>
<customData>
<nvPair>
<name>customName1</name>
<value>customValue1</value>
</nvPair>
<nvPair>
<name>customName2</name>
<value>customValue2</value>
</nvPair>

</customData>
<merchantRequestId>898</merchantRequestId>
<currencyCode>USD</currencyCode>
<subtotal>80</subtotal>
<shippingHandling>5</shippingHandling>
<tax>5</tax>
<discount>5</discount>
<giftWrap>10</giftWrap>
<misc>5</misc>
<total>100</total>
<orderId>testorderID</orderId>
<promoCode>testCampaignId</promoCode>
</ns2:paymentRequest>
<ns2:userData>
<ns2:userFirstName>Checkout</ns2:userFirstName>
<ns2:userLastName>Team</ns2:userLastName>
<ns2:userFullName>Checkout Team</ns2:userFullName>
<ns2:userName>7084410557</ns2:userName>
<ns2:userEmail>Checkout094192@gmail.com</ns2:userEmail>
<ns2:encUserId>...</ns2:encUserId>
</ns2:userData>

January 23, 2019 6-17

Visa Checkout XML Response—Token-Enabled Summary Payment Instrument

<ns2:creationTimeStamp>2015-09-11T00:33:23.973Z</ns2:creationTimeStamp>
<ns2:paymentInstrument>
<nickName>...</nickName>
<nameOnCard>...</nameOnCard>
<cardFirstName>...</cardFirstName>
<cardLastName>...</cardLastName>
<id>...</id>
<lastFourDigits>4684</lastFourDigits>
<tokenInfo>
<tokenRange>405954033</tokenRange>
<last4>0206</last4>
<expirationDate>
<month>10</month>
<year>2018</year>

</expirationDate>
</tokenInfo>
<paymentType>
<cardBrand>VISA</cardBrand>
<cardType>CREDIT</cardType>
<paymentAccountReference>V001...</paymentAccountReference> </paymentType>

<billingAddress>
<personName>...</personName>
<firstName>...</firstName>
<lastName>...</lastName>
<line1>...</line1>
<city>Foster City</city>
<stateProvinceCode>CA</stateProvinceCode>
<postalCode>94404</postalCode>
<countryCode>US</countryCode>
<phone>6505551212</phone>
<default>false</default>

</billingAddress>
<verificationStatus>VERIFIED</verificationStatus>
<expired>false</expired>
<cardArts>
<cardArt>
<baseImageFileName>https://....png</baseImageFileName>
<height>50</height>
<width>77</width>

</cardArt>
</cardArts>
<issuerBid>null</issuerBid>

</ns2:paymentInstrument>
<ns2:shippingAddress>
<personName>...</personName>
<firstName>...</firstName>
<lastName>...</lastName>
<line1>...</line1>
<city>Foster City</city>
<stateProvinceCode>CA</stateProvinceCode>
<postalCode>94404</postalCode>
<countryCode>US</countryCode>
<phone>6505551212</phone>
<default>false</default>
<id>...</id>
<verificationStatus>NOT_VERIFIED</verificationStatus>

</ns2:shippingAddress>
<ns2:riskData>
<advice>Unavailable</advice>

6-18 January 23, 2019

Get Payment Data Visa Checkout

<score>0</score>
<avsResponseCode>Y</avsResponseCode>
<cvvResponseCode>M</cvvResponseCode>
</ns2:riskData>
</ns2:getPaymentDataResponse>

Related Content
XML Request Including Headers (Parent Topic)

Get Summary Payment Data Success Example—Partner

Only use this version if you are acting on behalf of one of your merchants and the merchant's
API key was used to initially generate the payload.

For more information, see Visa Checkout JavaScript and Button Reference.

Related Content
JSON Request Including Headers

XML Request Including Headers

JSON Request Including Headers

GET
https://sandbox.secure.checkout.visa.com/wallet-services-web/payment/data/03e...
?externalClientId=partner_assigned_id_for_merchant
&apikey=partner_api_key
Accept: application/json
X-PAY-TOKEN: X:1397847496:...

Related Content
Get Summary Payment Data Success Example—Partner (Parent Topic)

JSON Response—Account Number-Based Summary Payment Instrument

JSON Response—Token-Enabled Summary Payment Instrument

JSON Response—Account Number-Based Summary Payment Instrument

{
"externalClientId": "partner_assigned_id_for_merchant",
"paymentRequest" : {
"customData" : {
"nvPair" : [
{
"name" : "customName1",
"value" : "customValue1"

},
{
"name" : "customName2",
"value" : "customValue2"

}
]

},
"merchantRequestId" : "898",

January 23, 2019 6-19

Visa Checkout JSON Response—Account Number-Based Summary Payment Instrument

"currencyCode" : "USD",
"subtotal" : "80",
"shippingHandling" : "5",
"tax" : "5",
"discount" : "5",
"giftWrap" : "10",
"misc" : "5",
"total" : "100",
"orderId" : "testorderID",
"promoCode" : "testCampaignId"

},
"userData" : {
"userFirstName" : "Checkout",
"userLastName" : "Team",
"userFullName" : "Checkout Team",
"userName" : "7084410557",
"userEmail" : "Checkout094192@gmail.com",
"encUserId" : "..."

},
"creationTimeStamp" : 1397847423768,
"paymentInstrument" : {
"id" : "...",
"lastFourDigits" : "1221",
"binSixDigits" : "371449",
"paymentType" : {
"cardBrand" : "VISA",
"cardType" : "CREDIT"
},
"billingAddress" : {
"personName" : "Joe Tester",
"firstName" : "Joe",
"lastName" : "Tester",
"line1" : "...",
"city" : "Foster City",
"stateProvinceCode" : "CA",
"postalCode" : "94404",
"countryCode" : "US"
},
"verificationStatus" : "VERIFIED",
"expired" : false,
"cardArts" : {
"cardArt" : [
{
"baseImageFileName" : "https://....png",
"height" : 50,
"width" : 77
}

]
},
"issuerBid" : "null",
"nickName" : "...",
"nameOnCard" : "Joe Tester",
"cardFirstName" : "Joe",
"cardLastName" : "Tester",
"expirationDate" : {
"month" : "10",
"year" : "2015"
}

},

6-20 January 23, 2019

Get Payment Data Visa Checkout

"shippingAddress" : {
"id" : "...=",
"verificationStatus" : "NOT_VERIFIED",
"personName" : "Joe Tester",
"firstName" : "Joe",
"lastName" : "Tester",
"line1" : "...",
"city" : "Foster City",
"stateProvinceCode" : "CA",
"postalCode" : "94404",
"countryCode" : "US"
},
"riskData" : {
"advice" : "Unavailable",
"score" : 0,
"avsResponseCode" : "Y",
"cvvResponseCode" : "M"
},
"visaCheckoutGuest": false,
"walletInfo": {

"walletName": "VISA_CHECKOUT"
},
"partialShippingAddress" : {
"countryCode" : "US",
"postalCode" : "94404"
},
"paymentMethodType": "PAN"

}

Related Content
JSON Request Including Headers (Parent Topic)

JSON Response—Token-Enabled Summary Payment Instrument

{
"externalClientId": "partner_assigned_id_for_merchant",
"paymentRequest" : {
"customData" : {
"nvPair" : [
{
"name" : "customName1",
"value" : "customValue1"

},
{
"name" : "customName2",
"value" : "customValue2"

}
]

},
"merchantRequestId" : "898",
"currencyCode" : "USD",
"subtotal" : "80",
"shippingHandling" : "5",
"tax" : "5",
"discount" : "5",
"giftWrap" : "10",
"misc" : "5",

January 23, 2019 6-21

Visa Checkout JSON Response—Token-Enabled Summary Payment Instrument

"total" : "100",
"orderId" : "testorderID",
"promoCode" : "testCampaignId"

},
"userData" : {
"userFirstName" : "Checkout",
"userLastName" : "Team",
"userFullName" : "Checkout Team",
"userName" : "7084410557",
"userEmail" : "Checkout094192@gmail.com",
"encUserId" : "..."

},
"creationTimeStamp" : 1441931603973,
"paymentInstrument" : {
"id" : "...",
"lastFourDigits" : "4684",
"tokenInfo" : {

"tokenRange" : "405954033",
"last4" : "0206",
"expirationDate" : {

"month" : "10",
"year" : "2018"

}
},
"paymentType" : {
"cardBrand" : "VISA",
"cardType" : "CREDIT"
},
"paymentAccountReference": "V001...",
"billingAddress" : {
"personName" : "Joe Tester",
"firstName" : "Joe",
"lastName" : "Tester",
"line1" : "...",
"city" : "Foster City",
"stateProvinceCode" : "CA",
"postalCode" : "94404",
"countryCode" : "US"
"phone" : "6505551212",
"default": false
},
"verificationStatus" : "VERIFIED",
"expired" : false,
"cardArts" : {
"cardArt" : [
{
"baseImageFileName" : "https://....png",
"height" : 50,
"width" : 77
}

]
},
"issuerBid" : "null",
"nickName" : "...",
"nameOnCard" : "Joe Tester",
"cardFirstName" : "Joe",
"cardLastName" : "Tester",

},
"shippingAddress" : {

6-22 January 23, 2019

Get Payment Data Visa Checkout

"id" : "...=",
"verificationStatus" : "NOT_VERIFIED",
"personName" : "Joe Tester",
"firstName" : "Joe",
"lastName" : "Tester",
"line1" : "...",
"city" : "Foster City",
"stateProvinceCode" : "CA",
"postalCode" : "94404",
"countryCode" : "US"
"phone" : "6505551212",
"default": false
},
"riskData" : {
"advice" : "Unavailable",
"score" : 0,
"avsResponseCode" : "Y",
"cvvResponseCode" : "M"
},
"visaCheckoutGuest": false,
"walletInfo": {

"walletName": "VISA_CHECKOUT"
},
"partialShippingAddress" : {
"countryCode" : "US",
"postalCode" : "94404"
},
"paymentMethodType": "TOKEN"

}

Related Content
JSON Request Including Headers (Parent Topic)

XML Request Including Headers

GET
https://sandbox.secure.checkout.visa.com/wallet-services-web/payment/data/03e...
?externalClientId=partner_assigned_id_for_merchant
&apikey=partner_api_key
&dataLevel=SUMMARY
Accept: application/xml
X-PAY-TOKEN: X:1397847496:...

Related Content
Get Summary Payment Data Success Example—Partner (Parent Topic)

XML Response—Account Number-Based Summary Payment Instrument

XML Response—Token-Enabled Summary Payment Instrument

XML Response—Account Number-Based Summary Payment Instrument

<?xml version="1.0" encoding="UTF-8"?>
<ns2:getPaymentDataResponse
...
<ns2:externalClientId>...</ns2:externalClientId>

January 23, 2019 6-23

Visa Checkout XML Response—Account Number-Based Summary Payment Instrument

...
<partialShippingAddress>
<countryCode>US</countryCode>
<postalCode>94404</postalCode>

</partialShippingAddress>
<ns2:paymentRequest>
<paymentMethodType>PAN</paymentMethodType>
<customData>
<nvPair>
<name>customName1</name>
<value>customValue1</value>

</nvPair>
<nvPair>
<name>customName2</name>
<value>customValue2</value>

</nvPair>
</customData>
<merchantRequestId>898</merchantRequestId>
<currencyCode>USD</currencyCode>
<subtotal>80</subtotal>
<shippingHandling>5</shippingHandling>
<tax>5</tax>
<discount>5</discount>
<giftWrap>10</giftWrap>
<misc>5</misc>
<total>100</total>
<orderId>testorderID</orderId>
<promoCode>testCampaignId</promoCode>

</ns2:paymentRequest>
<ns2:userData>
<ns2:userFirstName>Checkout</ns2:userFirstName>
<ns2:userLastName>Team</ns2:userLastName>
<ns2:userFullName>Checkout Team</ns2:userFullName>
<ns2:userName>7084410557</ns2:userName>
<ns2:userEmail>Checkout094192@gmail.com</ns2:userEmail>
<ns2:encUserId>...</ns2:encUserId>

</ns2:userData>
<ns2:creationTimeStamp>2014-04-18T18:57:03.768Z</ns2:creationTimeStamp>
<ns2:paymentInstrument>
<nickName>...</nickName>
<nameOnCard>...</nameOnCard>
<cardFirstName>...</cardFirstName>
<cardLastName>...</cardLastName>
<expirationDate>
<month>10</month>
<year>2015</year>
</expirationDate>
<id>...</id>
<lastFourDigits>1221</lastFourDigits>
<binSixDigits>371449</binSixDigits>
<paymentType>
<cardBrand>VISA</cardBrand>
<cardType>CREDIT</cardType>
</paymentType>
<billingAddress>
<personName>...</personName>
<firstName>...</firstName>
<lastName>...</lastName>
<line1>...</line1>

6-24 January 23, 2019

Get Payment Data Visa Checkout

<city>Foster City</city>
<stateProvinceCode>CA</stateProvinceCode>
<postalCode>94404</postalCode>
<countryCode>US</countryCode>
<phone>6505551212</phone>

<default>false</default>
</billingAddress>
<verificationStatus>VERIFIED</verificationStatus>
<expired>false</expired>
<cardArts>
<cardArt>
<baseImageFileName>https://....png</baseImageFileName>
<height>50</height>
<width>77</width>
</cardArt>

</cardArts>
<issuerBid>null</issuerBid>
</ns2:paymentInstrument>
<ns2:shippingAddress>
<personName>...</personName>
<firstName>...</firstName>
<lastName>...</lastName>
<line1>...</line1>
<city>Foster City</city>
<stateProvinceCode>CA</stateProvinceCode>
<postalCode>94404</postalCode>
<countryCode>US</countryCode>
<phone>6505551212</phone>
<default>false</default>
<id>...</id>
<verificationStatus>NOT_VERIFIED</verificationStatus>
</ns2:shippingAddress>
<ns2:riskData>
<advice>Unavailable</advice>
<score>0</score>
<avsResponseCode>Y</avsResponseCode>
<cvvResponseCode>M</cvvResponseCode>
</ns2:riskData>
</ns2:getPaymentDataResponse>

Related Content
XML Request Including Headers (Parent Topic)

XML Response—Token-Enabled Summary Payment Instrument

<?xml version="1.0" encoding="UTF-8"?>
<ns2:getPaymentDataResponse
...
<partialShippingAddress>
<countryCode>US</countryCode>
<postalCode>94404</postalCode>
</partialShippingAddress>
<paymentMethodType>TOKEN</paymentMethodType>
<ns2:paymentRequest>
<customData>
<nvPair>
<name>customName1</name>

January 23, 2019 6-25

Visa Checkout XML Response—Token-Enabled Summary Payment Instrument

<value>customValue1</value>
</nvPair>
<nvPair>
<name>customName2</name>
<value>customValue2</value>

</nvPair>
</customData>
<merchantRequestId>898</merchantRequestId>
<currencyCode>USD</currencyCode>
<subtotal>80</subtotal>
<shippingHandling>5</shippingHandling>
<tax>5</tax>
<discount>5</discount>
<giftWrap>10</giftWrap>
<misc>5</misc>
<total>100</total>
<orderId>testorderID</orderId>
<promoCode>testCampaignId</promoCode>

</ns2:paymentRequest>
<ns2:userData>
<ns2:userFirstName>Checkout</ns2:userFirstName>
<ns2:userLastName>Team</ns2:userLastName>
<ns2:userFullName>Checkout Team</ns2:userFullName>
<ns2:userName>7084410557</ns2:userName>
<ns2:userEmail>Checkout094192@gmail.com</ns2:userEmail>
<ns2:encUserId>...</ns2:encUserId>

</ns2:userData>
<ns2:creationTimeStamp>2015-09-11T00:33:23.973Z</ns2:creationTimeStamp>
<ns2:paymentInstrument>
<nickName>...</nickName>
<nameOnCard>...</nameOnCard>
<cardFirstName>...</cardFirstName>
<cardLastName>...</cardLastName>
<id>...</id>
<lastFourDigits>4684</lastFourDigits>
<tokenInfo>
<tokenRange>405954033</tokenRange>
<last4>0206</last4>
<expirationDate>
<month>10</month>
<year>2018</year>

</expirationDate>
</tokenInfo>
<paymentType>
<cardBrand>VISA</cardBrand>
<cardType>CREDIT</cardType>
<paymentAccountReference>V001...</paymentAccountReference> </paymentType>

<billingAddress>
<personName>...</personName>
<firstName>...</firstName>
<lastName>...</lastName>
<line1>...</line1>
<city>Foster City</city>
<stateProvinceCode>CA</stateProvinceCode>
<postalCode>94404</postalCode>
<countryCode>US</countryCode>
<phone>6505551212</phone>
<default>false</default>

</billingAddress>

6-26 January 23, 2019

Get Payment Data Visa Checkout

<verificationStatus>VERIFIED</verificationStatus>
<expired>false</expired>
<cardArts>
<cardArt>
<baseImageFileName>https://....png</baseImageFileName>
<height>50</height>
<width>77</width>
</cardArt>

</cardArts>
<issuerBid>null</issuerBid>
</ns2:paymentInstrument>
<ns2:shippingAddress>
<personName>...</personName>
<firstName>...</firstName>
<lastName>...</lastName>
<line1>...</line1>
<city>Foster City</city>
<stateProvinceCode>CA</stateProvinceCode>
<postalCode>94404</postalCode>
<countryCode>US</countryCode>
<phone>6505551212</phone>
<default>false</default>
<id>...</id>
<verificationStatus>NOT_VERIFIED</verificationStatus>
</ns2:shippingAddress>
<ns2:riskData>
<advice>Unavailable</advice>
<score>0</score>
<avsResponseCode>Y</avsResponseCode>
<cvvResponseCode>M</cvvResponseCode>
</ns2:riskData>
</ns2:getPaymentDataResponse>

Related Content
XML Request Including Headers (Parent Topic)

Get Full Payment Data Success Example

JSON Request Including Headers

GET
https://sandbox.secure.checkout.visa.com/wallet-services-web/payment/data/03e...
?apikey=...&dataLevel=FULL
Accept: application/json
X-PAY-TOKEN: X:1397847496:...

Related Content
JSON Response—Account Number-Based Full Payment Instrument

JSON Response—Token-Enabled Full Payment Instrument

JSON Response—Account Number-Based Full Payment Instrument

{
"partialShippingAddress" : {

January 23, 2019 6-27

Visa Checkout JSON Response—Token-Enabled Full Payment Instrument

"countryCode" : "US",
"postalCode" : "94404"

},
"encPaymentData" : "...",
"encKey" : "...",
"paymentMethodType": "PAN"

}

Note
The decrypted payload is the same payload as in the summary, except for the inclusion of
accountNumber in paymentInstrument:

"paymentInstrument": {
"id": "...",
"lastFourDigits": "1221",
"binSixDigits": "371449",
"accountNumber": "371449...1221",

...

Related Content
JSON Request Including Headers (Parent Topic)

JSON Response—Token-Enabled Full Payment Instrument

{
"partialShippingAddress" : {

"countryCode" : "US",
"postalCode" : "94404"

},
"encPaymentData" : "...",
"encKey" : "..."",
"paymentMethodType": "TOKEN"

}

Note
The decrypted payload is the same payload as in the summary, except for the inclusion of
token in tokenInfo and cryptogramInfo in paymentInstrument:

"paymentInstrument": {
"id": "...",
"lastFourDigits": "4684",
"tokenInfo": {

"token": "4059540330000206",
"tokenRange": "405954033",
"last4": "0206",
"expirationDate": {

"month": "10",
"year": "2018"

}
},
"cryptogramInfo": {

"cryptogram": "...",
"eci": "07"
"tokenCryptoType": "TAVV",
"expirationTimestamp": "2017-07-22T07:07:59.000Z"

},
"paymentAccountReference": "V001...",

...

6-28 January 23, 2019

Get Payment Data Visa Checkout

Related Content
JSON Request Including Headers (Parent Topic)

XML Request Including Headers

GET
https://sandbox.secure.checkout.visa.com/wallet-services-web/payment/data/03e...
?apikey=...&dataLevel=FULL
Accept: application/xml
X-PAY-TOKEN: X:1397847496:...

Related Content
XML Response—Account Number-Based Full Payment Instrument

XML Response—Token-Enabled Full Payment Instrument

XML Response—Account Number-Based Full Payment Instrument

<?xml version="1.0" encoding="UTF-8"?>
<ns2:getPaymentDataResponse
...
<partialShippingAddress>
<countryCode>US</countryCode>
<postalCode>94404</postalCode>
</partialShippingAddress>
<encPaymentData>...</encPaymentData>
<encKey>...</encKey>
<paymentMethodType>TOKEN</paymentMethodType>
</ns2:getPaymentDataResponse>

Note
The decrypted payload is the same payload as in the summary, except for the inclusion of
accountNumber in paymentInstrument:

<ns2:paymentInstrument>
...
<id>...</id>
<lastFourDigits>4684</lastFourDigits>
<binSixDigits>371449</binSixDigits>
<accountNumber>...</accountNumber>
...

Related Content
XML Request Including Headers (Parent Topic)

XML Response—Token-Enabled Full Payment Instrument

<?xml version="1.0" encoding="UTF-8"?>
<ns2:getPaymentDataResponse
...
<partialShippingAddress>
<countryCode>US</countryCode>
<postalCode>94404</postalCode>
</partialShippingAddress>
<encPaymentData>...</encPaymentData>

January 23, 2019 6-29

Visa Checkout Get Payment Data Error Response

<encKey>...</encKey>
<paymentMethodType>TOKEN</paymentMethodType>
</ns2:getPaymentDataResponse>

Note
The decrypted payload is the same payload as in the summary, except for the inclusion of
token in tokenInfo and cryptogramInfo in paymentInstrument:

<ns2:paymentInstrument>
...
<id>...</id>
<lastFourDigits>4684</lastFourDigits>
<tokenInfo>
<token>4059540330000206</token>
<tokenRange>405954033</tokenRange>
<last4>0206</last4>
<expirationDate>
<month>10</month>
<year>2018</year>

</expirationDate>
</tokenInfo>
<cryptogramInfo>
<cryptogram>...</cryptogram>
<eci>07</eci>
<tokenCryptoType>TAVV</tokenCryptoType>
<expirationTimestamp>2017-07-22T07:07:59.000Z</expirationTimestamp>
</cryptogramInfo>
<paymentAccountReference>V001...</paymentAccountReference>
...

Related Content
XML Request Including Headers (Parent Topic)

Get Payment Data Error Response

"responseStatus" :
{ "status" : 404,

"code" : "1010",
"severity" : "ERROR",
"message" : "CallId b9346ed5-08d1-44b2-be32-bbde5c4bf34f was not found."

} }

6-30 January 23, 2019

Get Payment Data Visa Checkout

January 23, 2019 7-1

Update Payment Info 7
Update Payment Info Summary

Call the payment/info/ resource path at the appropriate endpoint to confirm the amounts
the consumer specified in the Visa Checkout lightbox. You can modify the amounts before
calling payment/info/. For example, you can up-sell the customer, calculate shipping, apply
a discount, and so on, on your confirmation page and change the amounts in your Update
Payment Info request.

You can also use this call to specify card-on-file transactions, in which case the Visa Checkout
lightbox is not used.

Notes

1. To add a card on file without the consumer making a purchase, specify Create as the
order event type; in which case, subtotal and total can be 0.

2. To confirm the total amount of a purchase, specify Confirm as the order event type.
3. To avoid double counting the types of order events, specify subsequent order events of the

same type as Other. For example, if you request Update Payment Info for a Confirm
order event and subsequently request an Update Payment Info for a payment event of
Authorize, specify Other in the eventType of the OrderInfo structure and
Authorize in the eventType of the PayInfo structure to avoid double counting
Confirm events. Likewise, when using a Confirm_COF order event type, in subsequent
requests to Update Payment Info for a payment event, specify Other in the eventType of
the OrderInfo structure to avoid double counting Confirm_COF events.

Related Content
Event Types

Card on File Events

Promotions

Event Types

Additionally, you can update order information. You can register multiple order and payment
events in the same Update Payment Info request; for example, you can include order creation
information, payment information, and order confirmation information in the same request.
When registering one or more payment events, you must specify at least one order event,
which associates the payment event with an order ID.

The following table shows the typical usage of the order event's type (eventType):

Event description eventType

Card on file saved (outside of
a purchase flow)

Create

Order placed Confirm

7-2 January 23, 2019

Update Payment Info Visa Checkout

Order placed using a card on
file

Confirm_COF

Order rejected by risk/fraud
review

Fraud

Order canceled Cancel

None of the above events or
payment event subsequent to
a Confirm or Confirm_COF
order event.

Other

The following table shows the typical usage of the payment event's type (eventType) and
status (eventStatus):

Event description eventType eventStatus

Authorization was successful Authorize Success

Authorization was declined Authorize Failure

Settlement Capture Success

Settlement failure Capture Failure

Refund Refund Success

Refund failure Refund Failure

Chargeback Chargeback Chargeback

Refund due to chargeback Refund Chargeback

Other Other Other

Related Content
Update Payment Info Summary (Parent Topic)

Card on File Events

When a consumer uses the lightbox to confirm a purchase, you specify Confirm for the
eventType. For subsequent purchases using the same card, you can use the previously
generated call ID and Confirm_COF for the eventType.

To place a card on file without a purchase, you specify Create for the eventType; after
which, you can specify Confirm_COF for the eventType

Related Content
Update Payment Info Summary (Parent Topic)

January 23, 2019 7-3

Visa Checkout Promotions

Promotions

To apply a promotion to a purchase, you must specify values for the following fields:

• Currency code (currencyCode)
• Amount of promotion to be deducted from the total (discount)
• Event type (eventType), which is either Confirm or Confirm_COF
• Your order ID for the transaction (orderId)
• Promotion code, which is provided by Visa Checkout (promoCode)
• Subtotal (subtotal),which is the amount of the items before applying discounts and such
• Total (total), which is the net amount of the transaction after applying discounts and such

Related Content
Update Payment Info Summary (Parent Topic)

Update Payment Info Request

Path and Endpoints

Resource Path: payment/info/{callId}

Complete endpoint:

Sandbox:

https://sandbox.api.visa.com/wallet-services-web/payment/data/{callId}?apikey=key

Live:

https://api.visa.com/wallet-services-web/payment/info/{callId}?apikey=key

Parameter Description

{callId} The call ID that identifies the transaction.

Format: Alphanumeric

Since 2.0

Method

PUT

7-4 January 23, 2019

Update Payment Info Visa Checkout

Required Headers

Header Description

x-pay-token A token identifying the transaction and its
contents.

Format: Alphanumeric; maximum 100 characters in
the form of xv2:UTC_Timestamp:HMAC-
SHA256_hash, where

• UTC_Timestamp is a UNIX Epoch timestamp
• HMAC-SHA256_hash is an HMAC-SHA256 hash

using the shared secret associated with your
API key and the following unseparated items:

1. Timestamp from the transaction; exactly the
same as UNIX_UTC_Timestamp

2. Resource path (API name)
3. This HTTPS request's query string, if it exists

Note
To create the query string, concatenate
all query string components (names and
values) as UTF-8 characters, which are
URL-encoded per RFC 3986. Hex
characters must be uppercase. Multiple
parameters must be sorted using
lexicographic byte ordering and
separated from each other by an
ampersand (&) character (ASCII code
38). Parameter names are separated
from their values by the = character
(ASCII character 61), which must be
present even if the value is empty.
“Unreserved" characters specified in
Section 2.3 of RFC 3986 , including dash
-, dot ., underscore _, and tilde ~
should not be URL-encoded.

4. Complete request body, when a request
body exists

Example: x-pay-token: xv2:1440199445:
HMAC-SHA256_hash result

Since 6.3

Accept Acceptable response format.

Format:Must include the following value:

application/json

application/xml

Example: Accept: application/json

Example: Accept: application/xml

Since 2.0

January 23, 2019 7-5

Visa Checkout Query Parameters

Header Description

Content-Type Format of the content.

Format:Must include the following value:

application/json

application/xml

Example: Content-Type: application/json

Example: Content-Type: application/xml

Since 2.0

Query Parameters

Parameter Description

apikey (Required) Public API key, which is different than
the shared secret.

Format: Alphanumeric; maximum 49 characters

Example: apikey=...

Since 2.0

Update Payment Info Request Parameters

Multiple Info Properties

You can specify multiple order info and payment info properties by specifying multiple
property structures in a single updateInfo structure.

Note
An updateInfo structure is not required if you update only a single orderInfo.

Property Description

orderInfo (Required) Order info properties, one per
orderInfo structure.

Format: One or more orderInfo structures.

Since 3.2

payInfo (Optional) Pay info properties structure.

Format: A payInfo structure.

Since 3.2

Related Content

7-6 January 23, 2019

Update Payment Info Visa Checkout

Order Info Properties

Pay Info Properties

Order Info Properties

You specify order info properties in an orderInfo structure.

Property Description

total (Required) Total of the payment including all
amounts.

Format: Numeric; maximum 9 digits before an
optional decimal point and 4 decimal digits

Example: "total":"9.00"

Since 2.0

currencyCode (Required) The currency with which to process the
transaction. Required because totalmust be
provided.

Format: It is one of the following ISO 4217
standard alpha-3 code values:

• ARS - Argentine Peso (Since 2.7)
• AUD - Australian Dollar
• BRL - Brazilian Real (Since 2.7)
• CAD - Canadian Dollar
• CNY - Yuan Renminbi (Since 2.7)
• CLP - Chilean Peso (Since 2.7)
• COP - Colombian Peso (Since 2.7)
• EUR - Euro (Since 4.3)
• HKD - Hong Kong Dollar (Since 2.7)
• INR - Indian rupee (Since 4.6)
• KWD - Kuwaitii Dinar (Since 5.1)
• MYR - Malaysian Ringgit (Since 2.7)
• MXN - Mexican Peso (Since 2.7)
• NZD - New Zealand Dollar (Since 2.7)
• PEN - Nuevo Sol - Peru (Since 2.7)
• PLN - Polish Zloty (Since 4.3)
• QAR - Qatari Riyal (Since 5.1)
• SAR - Saudi Riyal (Since 5.1)
• SGD - Singapore Dollar (Since 2.7)
• ZAR - Rand (Since 2.7)
• UAH - Ukranian Hryvnia (Since 5.1)

January 23, 2019 7-7

Visa Checkout Order Info Properties

Property Description

• AED - UAE Dirham (Since 2.7)
• GBP - UK Pound Sterling (Since 4.3)
• USD - US Dollar

Currency codes must be uppercase.

Example: "currencyCode":"USD"

Since 2.0

subtotal (Required) Subtotal of the payment.

Format: Numeric; maximum 9 digits before an
optional decimal point and 4 decimal digits

Example: "subtotal":"9.00"

Since 2.0

shippingHandling (Optional) Total of shipping and handling charges
for the payment.

Format: Numeric; maximum 9 digits before an
optional decimal point and 4 decimal digits

Example: "shippingHandling" : "3.00"

Since 2.0

tax (Optional) Total tax-related charges in the
payment.

Format: Numeric; maximum 9 digits before an
optional decimal point and 4 decimal digits

Example: "tax":"1.00"

Since 2.0

discount (Optional) Total of discounts related to the
payment. If provided, it is a positive value
representing the amount to be deducted from the
total.

Format: Numeric; maximum 9 digits before an
optional decimal point and 4 decimal digits

Example: "discount" : "2.50"

Since 2.0

giftWrap (Optional) Total gift-wrapping charges in the
payment.

Format: Numeric; maximum 9 digits before an
optional decimal point and 4 decimal digits

Example: "giftWrap" : "1.99"

Since 2.0

7-8 January 23, 2019

Update Payment Info Visa Checkout

Property Description

misc (Optional) Total uncategorized charges in the
payment.

Format: Numeric; maximum 9 digits before an
optional decimal point and 4 decimal digits

Example: "misc":"1.00"

Since 2.0

eventType (Required) Kind of event associated with the
update.

Format: It is one of the following values:

• Create - Card on file saved (outside of a
purchase flow)

• Confirm - Order placed
• Confirm_COF - Order placed using a card on

file
• Cancel - Order canceled
• Fraud - Order rejected by risk/fraud review
• Other - None of the above events or payment

event subsequent to a Confirm or Confirm_
COF order event.

Example: "eventType":"Confirm"

Since 2.0

orderId (Required)Merchant's order ID associated with the
payment.

Format: Alphanumeric; maximum 100 characters

Since 2.0

January 23, 2019 7-9

Visa Checkout Pay Info Properties

Property Description

promoCode (Optional) Promotion codes associated with the
payment.

Format: Alphabetic characters, digits, space (),
underscore (_), hyphen (-), exclamation point (!
), "at" sign (@), pound sign or hash mark (#),
dollar sign ($), percent sign (%), asterisk (*), left/
open parenthesis ((), right/close parenthesis ()),
and plus sign (+). Multiple promotion codes are
separated by a period (.); maximum 100
characters for the entire string

Example: "promoCode": "17.15"

Since 2.0

reason (Optional) Reason for the update.

Format: Alphanbetic, numeric, spaces, and the
following characters:

~ ` ! @ # $ % ^ * () - _ + = [
{] } \ | : / ? . , Àà Ââ Ää Çç
Èè Éé Êê Ëë Îî Ïï Ññ Ôô Ùù Ûû Üü
Ÿÿ Æ æ OE oe ° º ª

Maximum 255 characters

Since 2.0

Related Content
Multiple Info Properties (Parent Topic)

Pay Info Properties

You specify pay info properties in an payInfo structure.

Property Description

payTransId (Optional) Payment transaction ID associated with
the merchant authorization of the payment
instrument. Use the identifier for a transaction
within the card network. The processor receives
this number from the network and passes it on to
the merchant in the authorization, capture, refund,
etc.

Format: Alphanumeric; maximum 100 characters

Since 2.0

eventType (Required) Kind of event associated with the
update.

Format: It is one of the following values:

7-10 January 23, 2019

Update Payment Info Visa Checkout

Property Description

• Authorize

• Capture

• Refund

• Cancel

• Fraud

• Chargeback

• Other

Example: "eventType":"Authorize"

Since 2.0

eventStatus (Required) Status of the event.

Format: It is one of the following values:

• Success

• Failure

• Fraud

• Chargeback

• Other

Specify Success or Failure if the eventType is
Authorize, Capture, Refund, or Cancel;
otherwise, specify the same value as the
eventType, e.g. specify Other if the eventType
is Other.

Example: "eventStatus":"Success"

Since 2.0

currencyCode (Required) The currency with which to process the
transaction. Required because totalmust be
provided.

Format: It is one of the following ISO 4217
standard alpha-3 code values:

• ARS - Argentine Peso (Since 2.7)
• AUD - Australian Dollar
• BRL - Brazilian Real (Since 2.7)
• CAD - Canadian Dollar
• CNY - Yuan Renminbi (Since 2.7)
• CLP - Chilean Peso (Since 2.7)
• COP - Colombian Peso (Since 2.7)
• EUR - Euro (Since 4.3)
• HKD - Hong Kong Dollar (Since 2.7)

January 23, 2019 7-11

Visa Checkout Pay Info Properties

Property Description

• INR - Indian Rupee (Since 4.6)
• KWD - Kuwaiti Dinar (Since 5.1)
• MYR - Malaysian Ringgit (Since 2.7)
• MXN - Mexican Peso (Since 2.7)
• NZD - New Zealand Dollar (Since 2.7)
• PEN - Nuevo Sol - Peru (Since 2.7)
• PLN - Polish Zloty (Since 4.3)
• QAR - Qatari Riyal (Since 5.1)
• SAR - Saudi Riyal (Since 5.1)
• SGD - Singapore Dollar (Since 2.7)
• ZAR - Rand (Since 2.7)
• UAH - Ukranian Hryvnia (Since 5.1)
• AED - UAE Dirham (Since 2.7)
• GBP - UK Pound Sterling (Since 4.3)
• USD - US Dollar

Currency codes must be uppercase.

Example: "currencyCode":"USD"

Since 2.0

total (Required) Total of the payment including all
amounts.

Format: Numeric; maximum 9 digits before an
optional decimal point and 4 decimal digits

Example: "total":"9.00"

Since 2.0

authCode (Optional) Authorization code associated with the
transaction.

Format: Numeric; maximum 6 digits

Example: "authCode":"123456"

Since 2.0

7-12 January 23, 2019

Update Payment Info Visa Checkout

Property Description

avsResponseCode (Optional) Address verification system response
code.

Format:Alphanumeric

Example: "avsResponseCode" : "V"

Since 2.0

reason (Optional) Reason for the update.

Format: Alphanumeric; maximum 255 characters

Since 2.0

Related Content
Multiple Info Properties (Parent Topic)

Update Payment Info Errors

Status Code Description

400 1015 Invalid request data; a
required field is either
missing or invalid

401 1017 The API key used in the
operation is not authorized
for the requested action;
ensure that the API key
corresponds to the call ID

403 None x-pay-token header
missing or invalid, or API key
is missing or invalid

404 1010 API key or call ID not found,
or data referenced by the API
key is invalid or not available

Note
Other errors are internal.

January 23, 2019 7-13

Visa Checkout Update Payment Info Examples

Update Payment Info Examples

Update Multiple Info Structure Examples

JSON Request Body

The orderId in the orderInfo, as described in this example, should match the orderId
that was passed in the orderInfo of the initial UpdatePayment call.

{
"updateInfo": [

{
"payInfo": {

"reason": "Just a test",
"avsResponseCode": "Y",
"total": "91.00",
"currencyCode": "USD",
"eventStatus": "Success",
"eventType": "Authorize",
"payTransId": "123456789"

}
},
{

"orderInfo": {
"currencyCode": "USD",
"discount": "25.00",
"eventType": "Confirm",
"giftWrap": "0",
"misc": "0",
"orderId": "123456",
"promoCode": "VISACHECKOUT25",
"reason": "Order placed",
"shippingHandling": "10.00",
"subtotal": "100.00",
"tax": "6.00",
"total": "91.00"

}
}

]
}

JSON Response

HTTP/1.1 200 OK

{
}

XML Request

<?xml version="1.0" encoding="UTF-8"?>
<p:updatePaymentInfoRequest
xmlns:p="http://www.visa.com/vme/walletservices/external/payment"
xmlns:p1="http://www.visa.com/vme/walletservices/external/common"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation=

7-14 January 23, 2019

Update Payment Info Visa Checkout

"http://www.visa.com/vme/walletservices/external/payment/payment_mgmt.xsd">
<p:updateInfo>

<p:orderInfo>
<p1:currencyCode>USD</p1:currencyCode>
<p1:discount>1.11</p1:discount>
<p:eventType>Create</p:eventType>
<p1:giftWrap>20</p1:giftWrap>
<p1:misc>333.12</p1:misc>
<p1:orderId>1234556666</p1:orderId>
<p1:promoCode>c3444ffttt</p1:promoCode>
<p:reason>Order got created</p:reason>
<p1:shippingHandling>51.99</p1:shippingHandling>
<p1:subtotal>800</p1:subtotal>
<p1:tax>71</p1:tax>
<p1:total>1000.11</p1:total>

</p:orderInfo>
</p:updateInfo>
<p:updateInfo>
<p:payInfo>

<p:payTransId>11100001122222222</p:payTransId>
<p:eventType>Authorize</p:eventType>
<p:eventStatus>Success</p:eventStatus>
<p:currencyCode>USD</p:currencyCode>
<p:total>200.32</p:total>
<p:reason>Order got approved</p:reason>

</p:payInfo>
</p:updateInfo>
</p:updatePaymentInfoRequest>

XML Response

HTTP/1.1 200 OK
<?xml version="1.0" encoding="UTF-8"?>
<ns2:updatePaymentInfoResponse
...
/>

Order Update Success Example

JSON Request Including Headers

PUT
https://sandbox.secure.checkout.visa.com/wallet-services-web/payment/info/03e...
?apikey=...
Accept: application/json
X-PAY-TOKEN: X:1397847508:...

JSON Request Body

{
"orderInfo" : {

"total" : "101",
"currencyCode" : "USD",
"subtotal" : "80.1",
"shippingHandling" : "5.1",

January 23, 2019 7-15

Visa Checkout JSON Response

"tax" : "7.1",
"discount" : "5.25",
"giftWrap" : "10.1",
"misc" : "3.2",
"eventType" : "Confirm",
"orderId" : "testorderID",
"promoCode" : "testPromoCode",
"reason" : "Order Successfully Created"}

}

JSON Response

HTTP/1.1 200 OK
{
}

XML Request Including Headers

PUT
https://sandbox.secure.checkout.visa.com/wallet-services-web/payment/info/03e...
?apikey=...
Accept: application/xml
X-PAY-TOKEN: X:1397847508:...

XML Request Body

<?xml version="1.0" encoding="UTF-8"?>
<p:updatePaymentInfoRequest
xmlns:p="http://www.visa.com/vme/walletservices/external/payment"
xmlns:p1="http://www.visa.com/vme/walletservices/external/common"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.visa.com/vme/walletservices/external/payment/

payment_mgmt.xsd ">
<p:orderInfo>
<p1:currencyCode>USD</p1:currencyCode>
<p1:subtotal>80</p1:subtotal>
<p1:shippingHandling>5</p1:shippingHandling>
<p1:tax>7</p1:tax>
<p1:discount>5</p1:discount>
<p1:giftWrap>10</p1:giftWrap>
<p1:misc>3</p1:misc>
<p1:total>100</p1:total>
<p:eventType>Confirm</p:eventType>
<p1:orderId>testorderID</p1:orderId>
<p1:promoCode>testCampaignId</p1:promoCode>
<p:reason>Received money</p:reason>
</p:orderInfo>
</p:updatePaymentInfoRequest>

XML Response

HTTP/1.1 200 OK

<?xml version="1.0" encoding="UTF-8"?>
<ns2:updatePaymentInfoResponse

7-16 January 23, 2019

Update Payment Info Visa Checkout

...
/>

Payment Update Success Example

JSON Request Including Headers

PUT
https://sandbox.secure.checkout.visa.com/wallet-services-web/payment/info/03e...
?apikey=...
Accept: application/json
X-PAY-TOKEN: X:1397847508:...

JSON Request Body

{
"payInfo" : {

"payTransId" : "66012345001069003",
"eventType" : "Authorize",
"eventStatus" : "Success",
"currencyCode" : "USD",
"total" : "100",
"authCode" : "123456",
"avsResponseCode" : "V",
"reason" : "..."

}
}

JSON Response

HTTP/1.1 200 OK

{
}

XML Request Including Headers

PUT
https://sandbox.secure.checkout.visa.com/wallet-services-web/payment/info/03e...
?apikey=...
Accept: application/xml
X-PAY-TOKEN: X:1397847508:...

XML Request Body

<p:updatePaymentInfoRequest
xmlns:p="http://www.visa.com/vme/walletservices/external/payment"
xmlns:p1="http://www.visa.com/vme/walletservices/external/common"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.visa.com/vme/walletservices/external/payment/

payment_mgmt.xsd ">
<p:payInfo>
<p:payTransId>12332432</p:payTransId>
<p:eventType>Authorize</p:eventType>

January 23, 2019 7-17

Visa Checkout XML Response

<p:eventStatus>Success</p:eventStatus>
<p:currencyCode>USD</p:currencyCode>
<p:total>888.32</p:total>
<p:authCode>123456</p:authCode>
<p:avsResponseCode>Y</p:avsResponseCode>
<p:reason>Authorization was successful</p:reason>
</p:payInfo>
</p:updatePaymentInfoRequest>

XML Response

HTTP/1.1 200 OK

<?xml version="1.0" encoding="UTF-8"?>
<ns2:updatePaymentInfoResponse
...
/>

Update Payment Info Error Examples

JSON Update Payment Info Error Example

{ "responseStatus" :
{ "status" : 404,

"code" : "1010",
"severity" : "ERROR",
"message" : "CallId b9346ed5-08d1-44b2-be32-bbde5c4bf34f was not found."

} }

{
"responseStatus":
{
"status":400,
"code":1015,
"severity":"INFO",
"message":"Invalid request data. "

}
}

XML Update Payment Info Error Example

<responseStatus>
<status>400</status>
<code>1015</code>
<severity>INFO</severity
<message>Invalid request data. </message></responseStatus>
</errorResponse>
}

7-18 January 23, 2019

Update Payment Info Visa Checkout

January 23, 2019 8-1

Update Payment Info Pixel Image
8

Update Payment Info Pixel Image Summary

Note
You should use the Update Payment Info API. The Update Payment Info Pixel Image is provided

only for legacy integrations.

You can confirm a purchase by including payment/updatepaymentinfo.gif on a page
that appears after the customer reviews and approves the order. Specifically, you associate
parameters that convey the purchase information with the image before the image is loaded
on the page, allowing the information to be transmitted to Visa Checkout when the image is
loaded.

You can also use this call to specify card-on-file transactions, in which case the Visa Checkout
lightbox is not used.

Note
The updatepaymentinfo.gif image itself is 1-pixel.

You must specify the following parameters as part of the image URL:

• Your public API key (apikey), which is different than your shared secret or an encrypted
key (encKey)

• Transaction whose payment you want to confirm (callId)

Notes

1. You can calculate shipping, apply discounts, and so on, within the button source itself if you
want the consumer to confirm in the lightbox.

2. You must load the image with the query parameters or call payment/info.
3. As a best practice, you should load payment/updatepaymentinfo.gif when the

consumer confirms the order on your confirmation page.
4. You can only specify the order update or payment update in the same operation; you

cannot do both in the same operation.
5. You can specify the following event types:

Event description eventType

Card on file saved (outside of a
purchase flow)

Create

Order placed Confirm

Order placed using a card on file Confirm_COF

Order rejected by risk/fraud review Fraud

8-2 January 23, 2019

Update Payment Info Pixel Image Visa Checkout

Order canceled Cancel

None of the above Other

Related Content
Card on File Events

Promotions

Card on File Events

When a consumer uses the lightbox to confirm a purchase, you specify Confirm for the
eventType. For subsequent purchases using the same card, you can use the previously
generated call ID and Confirm_COF for the eventType.

To place a card on file without a purchase, you specify Create for the eventType; after
which, you can specify Confirm_COF for the eventType

Related Content
Update Payment Info Pixel Image Summary (Parent Topic)

Promotions

To apply a promotion to a purchase, you must specify values for the following fields:

• Currency code (currencyCode)
• Amount of promotion to be deducted from the total (discount)
• Event type (eventType), which is either Confirm or Confirm_COF
• Your order ID for the transaction (orderId)
• Promotion code, which is provided by Visa Checkout (promoCode)
• Subtotal (subtotal),which is the amount of the items before applying discounts and such
• Total (total), which is the net amount of the transaction after applying discounts and such

Related Content
Update Payment Info Pixel Image Summary (Parent Topic)

Update Payment Info Pixel Image Request

Path and Endpoints

Resource Path: payment/updatepaymentinfo.gif

Complete endpoint:

Sandbox:

https://sandbox.secure.checkout.visa.com
/wallet-services-web/payment/updatepaymentinfo.gif

Live:

January 23, 2019 8-3

Visa Checkout Update Payment Info Pixel Image Request Parameters

https://secure.checkout.visa.com/wallet-services-web/payment/updatepaymentinfo.gif

Update Payment Info Pixel Image Request Parameters

Property Description

apikey (Required) Public API key, which is different than
the shared secret.

Format: Alphanumeric; maximum 100 characters

Example: apikey=xxxxxxxxxxxxxxxxxxxx

Since 2.0

callId (Required) Visa Checkout transaction ID returned
by the Visa Checkout payment.success event.

Format: Alphanumeric; maximum 48 characters

Example: "callId":"..."

Since 2.0

currencyCode (Required) The currency with which to process the
transaction. Required because totalmust be
provided.

Format: It is one of the following ISO 4217
standard alpha-3 code values:

• ARS - Argentine Peso (Since 2.7)
• AUD - Australian Dollar
• BRL - Brazilian Real (Since 2.7)
• CAD - Canadian Dollar
• CNY - Yuan Renminbi (Since 2.7)
• CLP - Chilean Peso (Since 2.7)
• COP - Colombian Peso (Since 2.7)
• EUR - Euro (Since 4.3)
• HKD - Hong Kong Dollar (Since 2.7)
• INR - Indian rupee (Since 4.6)
• KWD - Kuwaiti Dinar (Since 5.1)
• MYR - Malaysian Ringgit (Since 2.7)
• MXN - Mexican Peso (Since 2.7)
• NZD - New Zealand Dollar (Since 2.7)
• PEN - Nuevo Sol - Peru (Since 2.7)
• PLN- Polish Zloty (Since 4.3)
• QAR - Qatari Riyal (Since 5.1)
• SAR - Saudi Riyal (Since 5.1)

8-4 January 23, 2019

Update Payment Info Pixel Image Visa Checkout

Property Description

• SGD - Singapore Dollar (Since 2.7)
• ZAR - Rand (Since 2.7)
• UAH - Ukranian Hryvnia (Since 5.1)
• AED - UAE Dirham (Since 2.7)
• GBP - UK Pound Sterling (Since 4.3)
• USD - US Dollar

Currency codes must be uppercase.

Example: "currencyCode":"USD"

Since 2.0

discount (Optional) Total of discounts related to the
payment. If provided, it is a positive value
representing the amount to be deducted from the
total.

Format: Numeric; maximum 9 digits before an
optional decimal point and 4 decimal digits

Example: "discount" : "2.50"

Since 2.0

eventType (Required) Kind of event associated with the
update.

Format: It is one of the following values:

• Create - Card on file saved (outside of a
purchase flow)

• Confirm - Order placed
• Confirm_COF - Order placed using a card on

file
• Cancel - Order canceled
• Fraud - Order rejected by risk/fraud review
• Other - None of the above

Example: "eventType":"Confirm"

Since 2.0

giftWrap (Optional) Total gift-wrapping charges in the
payment.

Format: Numeric; maximum 9 digits before an
optional decimal point and 4 decimal digits

Example: "giftWrap" : "1.99"

Since 2.0

January 23, 2019 8-5

Visa Checkout Update Payment Info Pixel Image Request Parameters

Property Description

misc (Optional) Total uncategorized charges in the
payment.

Format: Numeric; maximum 9 digits before an
optional decimal point and 4 decimal digits

Example: "misc":"1.00"

Since 2.0

orderId (Required)Merchant's order ID associated with the
payment.

Format: Alphanumeric; maximum 100 characters

Since 2.0

promoCode (Optional) Promotion codes associated with the
payment.

Format: Alphabetic characters, digits, space (),
underscore (_), hyphen (-), exclamation point (!
), "at" sign (@), pound sign or hash mark (#),
dollar sign ($), percent sign (%), asterisk (*), left/
open parenthesis ((), right/close parenthesis ()),
and plus sign (+). Multiple promotion codes are
separated by a period (.); maximum 100
characters for the entire string

Example: "promoCode": "17.15"

Since 2.0

reason (Optional) Reason for the update.

Format: Alphanumeric; maximum 255 characters

Since 2.0

shippingHandling (Optional) Total of shipping and handling charges
for the payment.

Format: Numeric; maximum 9 digits before an
optional decimal point and 4 decimal digits

Example: "shippingHandling" : "3.00"

Since 2.0

subtotal (Required) Subtotal of the payment.

Format: Numeric; maximum 9 digits before an
optional decimal point and 4 decimal digits

Example: "subtotal":"9.00"

Since 2.0

8-6 January 23, 2019

Update Payment Info Pixel Image Visa Checkout

Property Description

tax (Optional) Total tax-related charges in the
payment.

Format: Numeric; maximum 9 digits before an
optional decimal point and 4 decimal digits

Example: "tax":"1.00"

Since 2.0

total (Required) Total of the payment including all
amounts.

Format: Numeric; maximum 9 digits before an
optional decimal point and 4 decimal digits

Example: "total":"9.00"

Since 2.0

Update Payment Info Pixel Image Response
The 1-pixel image

Update Payment Data Info Pixel Image Error Messages
An error response contains the v-message header that you can use to determine the error.
Typically, you will use debugging tools built into the browser to view this message.

Header Description

v-message Visa Checkout error message.

Format: Alphanumeric

Example: "v-message":"callid ff6e689c-
170c-4f18-a1ba-da5047a35f152 was not
found"

Since 2.0

Update Payment Info Request Inside an Image Tag

<img src=“https://sandbox.secure.checkout.visa.com/wallet-services-web
/payment/updatepaymentinfo.gif?apikey=...&callId=...
¤cyCode=USD&eventType=Confirm&total=11.00&subtotal=11.00” />

Update Payment Info Request

GET https://sandbox.secure.checkout.visa.com

January 23, 2019 8-7

Visa Checkout Update Payment Info Error Response

/wallet-services-web/payment/updatepaymentinfo.gif
?apikey=...
&callId=...
¤cyCode=USD
&eventType=...
&discount=...
&giftWrap=...
&misc=...
&orderId=...
&promoCode=...
&reason=...
&subtotal=...
&shippingHandling=...
&tax=...
&total=...

Update Payment Info Error Response

v-message":"callid ... was not found

8-8 January 23, 2019

Update Payment Info Pixel Image Visa Checkout

January 23, 2019 A-1

Decrypting Consumer Information
A

Decrypting Consumer Information Introduction

Consumer information that might be needed to complete a payment is returned by a
payment.success event. It is always encrypted. The Get Payment Info API returns the same
information; however, only full information, which includes the consumer's account number, is
encrypted.

Consumer Information Decryption Algorithm

Visa Checkout supports the use of xv2 API keys for apikey in JavaScript (V.init) and in API
requests, which require an x-pay-token header. Creation of the xv2 token requires a
different algorithm; however, there is no change to API key usage for making requests.

In addition to the change of API keys, you need to provide an \encryption key,
encryptionKey, which Visa Checkout uses to encrypt data in the consumer information
payload using the shared secret associated with this encryption key.

Contact your Visa Checkout representative to get set up for using these keys in your Visa
Checkout projects

To decrypt consumer information:

1. Decrypt the dynamic key:

a. Base64-decode the encrypted dynamic key
b. Remove the first 32 bytes of the decoded value–this is the HMAC. Calculate a SHA-256

HMAC of the rest of the decoded data using your shared secret and compare it with the
HMAC from the first 32 bytes.

c. The next 16 bytes should be removed and used as the IV for the decryption algorithm
d. Decrypt the remaining data using AES-256-CBC, the IV from Step 1c, and the SHA-256

hash of the shared secret.
2. Decrypt the payment data payload (encPaymentData) using the decrypted dynamic key

from Step 1:

a. Base64-decode the encrypted payment data
b. Remove the first 32 bytes of the decoded value–this is the HMAC. Calculate a SHA-256

HMAC of the rest of the decoded data using your decrypted dynamic key (different than
the encryption key) and compare it with the HMAC from the first 32 bytes.

c. The next 16 bytes should be removed and used as the IV for the decryption algorithm.
d. Decrypt the rest of the payload using AES-256-CBC, the IV from Step 2c, and the SHA-

256 hash of the decrypted dynamic key (different than the encryption key).

1. Decrypt the dynamic key, which is different than the encryption key: :

a. Base64-decode the encrypted dynamic key
b. Remove the first 32 bytes of the decoded value–this is the HMAC. Calculate a SHA-256

HMAC of the rest of the decoded data using the shared secret associated with your
encryption key and compare it with the HMAC from the first 32 bytes.

A-2 January 23, 2019

Decrypting Consumer Information Visa Checkout

c. The next 16 bytes should be removed and used as the IV for the decryption algorithm
d. Decrypt the remaining data using AES-256-CBC, the IV from Step 1c, and the SHA-256

hash of the shared secret.
2. Decrypt the payment data payload (encPaymentData) using the decrypted dynamic key

from Step 1:

a. Base64-decode the encrypted payment data
b. Remove the first 32 bytes of the decoded value–this is the HMAC. Calculate a SHA-256

HMAC of the rest of the decoded data using your decrypted dynamic key and compare
it with the HMAC from the first 32 bytes.

c. The next 16 bytes should be removed and used as the IV for the decryption algorithm.
d. Decrypt the rest of the payload using AES-256-CBC, the IV from Step 2c, and the SHA-

256 hash of the decrypted dynamic key.

Consumer Information Decryption Examples

Java Decryption Example

The following Java code, using the Bouncy Castle API and bcprov-jdk15on-149.jar,
provides an example of decrypting the payload.

Note
Encryption in Java requires Java Cryptography Extension (JCE) Unlimited Strength Jurisdiction
Policy files.

private static final String CIPHER_ALGORITHM = "AES/CBC/PKCS5Padding";
private static final String HASH_ALGORITHM = "SHA-256";
private static final String HMAC_ALGORITHM = "HmacSHA256";
private static final int IV_LENGTH = 16, HMAC_LENGTH = 32;
private static final Charset utf8 = Charset.forName("UTF-8");
private static final Provider bcProvider;
static {
bcProvider = new BouncyCastleProvider();
if (Security.getProvider(BouncyCastleProvider.PROVIDER_NAME) == null) {
Security.addProvider(bcProvider);
}

}

private static byte[] decrypt(byte[] key,byte[] data) throws GeneralSecurityException{
byte[] decodedData = Base64.decode(data);
if (decodedData == null || decodedData.length <= IV_LENGTH) {
throw new RuntimeException("Bad input data.");
}
byte[] hmac = new byte[HMAC_LENGTH];
System.arraycopy(decodedData, 0, hmac, 0, HMAC_LENGTH);
if (!Arrays.equals(hmac,
hmac(key, decodedData, HMAC_LENGTH, decodedData.length - HMAC_LENGTH))) {

throw new RuntimeException("HMAC validation failed.");
}
byte[] iv = new byte[IV_LENGTH];
System.arraycopy(decodedData, HMAC_LENGTH, iv, 0, IV_LENGTH);
Cipher cipher = Cipher.getInstance(CIPHER_ALGORITHM, bcProvider);
cipher.init(Cipher.DECRYPT_MODE, new SecretKeySpec(hash(key), "AES"),
new IvParameterSpec(iv));

January 23, 2019 A-3

Visa Checkout C# Decryption Example

return cipher.doFinal(decodedData, HMAC_LENGTH + IV_LENGTH,
decodedData.length - HMAC_LENGTH - IV_LENGTH);

}

private static byte[] hash(byte[] key) throws NoSuchAlgorithmException {
MessageDigest md = MessageDigest.getInstance(HASH_ALGORITHM);
md.update(key);
return md.digest();
}

private static byte[] hmac(byte[] key, byte[] data, int offset, int length)
throws GeneralSecurityException {

Mac mac = Mac.getInstance(HMAC_ALGORITHM, bcProvider);
mac.init(new SecretKeySpec(key, HMAC_ALGORITHM));
mac.update(data, offset, length);
return mac.doFinal();
}

C# Decryption Example

using System;
using System.IO;
using System.Security.Cryptography;
using System.Text;
class Decrypt {
const int HMAC_LENGTH = 32, IV_LENGTH = 16;
public static String decryptPayload(String key, String wrappedKey, String payload) {
return Encoding.UTF8.GetString(decrypt(decrypt(Encoding.UTF8.GetBytes(key),

Convert.FromBase64String(wrappedKey)), Convert.FromBase64String(payload)));
}
public static byte[] decrypt(byte[] key, byte[] data) {
if (data == null || data.Length <= IV_LENGTH + HMAC_LENGTH) {
throw new ArgumentException("Bad input data", "data");
}
byte[] hmac = new byte[HMAC_LENGTH];
Array.Copy(data, 0, hmac, 0, HMAC_LENGTH);
byte[] iv = new byte[IV_LENGTH];
Array.Copy(data, HMAC_LENGTH, iv, 0, IV_LENGTH);
byte[] payload = new byte[data.Length - HMAC_LENGTH - IV_LENGTH];
Array.Copy(data, HMAC_LENGTH + IV_LENGTH, payload, 0, payload.Length);
//if (byteArrayEquals(hmac, dohmac(key, byteArrayConcat(iv, payload)))) {
// TODO: Handle HMAC validation failure
//}
Aes aes = new AesManaged();
aes.BlockSize = 128;
aes.KeySize = 256;
aes.Key = hash(key);
aes.IV = iv;
aes.Mode = CipherMode.CBC;
aes.Padding = PaddingMode.PKCS7;
MemoryStream ms = new MemoryStream();
CryptoStream cs=new CryptoStream(ms,aes.CreateDecryptor(),CryptoStreamMode.Write);
cs.Write(payload, 0, payload.Length);
cs.FlushFinalBlock();
return ms.ToArray();
}
public static byte[] hash(byte[] key) {
return (new SHA256Managed()).ComputeHash(key);

A-4 January 23, 2019

Decrypting Consumer Information Visa Checkout

}
public static byte[] dohmac(byte[] key, byte[] data) {
return (new HMACSHA256(key)).ComputeHash(data);
}
public static void Main(string[] args) {
Console.WriteLine(decryptPayload("SECRET_KEY", "..."));
}
}

Node.js Decryption Example

The following Node.js JavaScript code provides an example of decrypting the payload:

const crypto = require('crypto');

module.exports = {
decryptPayload: function(key,wrappedKey,payload){

let decryptedKey = decrypt(wrappedKey,key);
let decryptedMsg = decrypt(payload,decryptedKey);
return decryptedMsg.toString('utf8');

}
}

function decrypt(encrypted,key){
let encryptedBuffer = new Buffer(encrypted,'base64');
// TODO: Check that data(encryptedBuffer) is at least bigger
// than HMAC + IV length , i.e. 48 bytes
let hmac = new Buffer(32);
let iv = new Buffer(16);
encryptedBuffer.copy(hmac,0,0,32);
encryptedBuffer.copy(iv,0,32,48);
let data = Buffer.from(encryptedBuffer).slice(48);

var hash = crypto.createHmac('SHA256', key).update
(Buffer.concat([iv,data])).digest();
if(!hmac.equals(hash)){

// TODO: Handle HMAC validation failure
return '';

}

let decipher = crypto.createDecipheriv('aes-256-cbc',
crypto.createHash('sha256').update(key).digest(), iv);
let decryptedData = Buffer.concat([decipher.update(data), decipher.final()]);
return decryptedData;

}

PHP Decryption Example

The following PHP code, using PHP version 5.3.0 or later with OpenSSL support, provides an
example of decrypting the payload:

<?php
function decryptPayload($key, $wrappedKey, $payload) {

$unwrappedKey = decrypt($key, $wrappedKey);
return decrypt($unwrappedKey, $payload);

}

January 23, 2019 A-5

Visa Checkout Python Decryption Example

function decrypt($key, $data) {
$decodedData = base64_decode($data);
// TODO: Check that data is at least bigger than HMAC + IV length
$hmac = substr($decodedData, 0, 32);
$iv = substr($decodedData, 32, 16);
$data = substr($decodedData, 48);
if ($hmac != hmac($key, $iv . $data)) {

// TODO: Handle HMAC validation failure
return 0;

}
return openssl_decrypt($data,'aes-256-cbc',hashKey($key),OPENSSL_RAW_DATA,$iv);

}

function hashKey($data) {
$hasher = hash_init('sha256');
hash_update($hasher, $data);
return hash_final($hasher, true);

}

function hmac($key, $data) {
return hash_hmac('sha256', $data, $key, true);

}
?>

Python Decryption Example

The following Python code, using the M2Crypto wrapper (version 0.21.1) around OpenSSL,
provides an example of decrypting the payload:

from M2Crypto import EVP
import base64
import hashlib
import hmac

def decryptPayload(key, wrappedKey, payload):
unwrappedKey = decrypt(key, wrappedKey)
return decrypt(unwrappedKey, payload)

def decrypt(key, data):
decodedData = base64.b64decode(data)
TODO: Check that data is at least bigger than HMAC + IV length
hmac = decodedData[0:32]
iv = decodedData[32:48]
data = decodedData[48:]
if hmac != doHmac(key, iv + data):

TODO: Handle HMAC validation failure
return ''

cipher = EVP.Cipher('aes_256_cbc', hash(key), iv, 0)
unencrypted = cipher.update(data)
return unencrypted + cipher.final()

def hash(data):
hasher = hashlib.sha256()
hasher.update(data)
return hasher.digest()

A-6 January 23, 2019

Decrypting Consumer Information Visa Checkout

def doHmac(key, data):
hmacer = hmac.new(key, data, hashlib.sha256)
return hmacer.digest()

Ruby Decryption Example

require 'openssl'
require 'base64'

def decryptPayload(key, wrappedKey, payload)
unwrappedKey = decrypt(key, wrappedKey)
decrypt(unwrappedKey, payload)

end

def decrypt(key, data)
decodedData = Base64.strict_decode64(data)
TODO: Check that data is at least bigger than IV length
if (decodedData.byteslice(0,32) !=

hmac(key,decodedData.byteslice(32,decodedData.bytesize-32)))
TODO: Handle HMAC validation failure
return ''

end
cipher = OpenSSL::Cipher.new('AES-256-CBC')
cipher.decrypt
cipher.key = hash(key)
cipher.iv = decodedData.byteslice(32, 48)
cipher.update(decodedData.byteslice(48, decodedData.bytesize)) + cipher.final

end

def hash(data)
digest = OpenSSL::Digest::SHA256.new
digest.update(data)
digest.digest

end

def hmac(key, data)
OpenSSL::HMAC.digest(OpenSSL::Digest::SHA256.new, key, data)

end

January 23, 2019 B-1

HMAC-SHA256–Bit Hashing B
About the HMAC-SHA256–Bit Hashing Algorithm

HMAC-SHA256-bit hashing is required for any string that includes your shared secret, such as
the x-pay-token header in API calls. These cases are unrelated to the return or decryption of
consumer payment information; specifically, HMAC-SHA256-bit hashing is not used to decrypt
payment data. The algorithms used for decryption are different.

The strings to be encrypted are specific to the context; for example, the encrypted string in the
token field contains different content than encrypted string in the x-pay-token header. The
HMAC-SHA256-bit hashing algorithm itself does not change, only the input string to be
encrypted. The output from the hash is an encrypted string that is represented in 64 bytes.

Note
You cannot decrypt a string once it has been encrypted with HMAC-SHA256-bit hashing. You
use the encrypted string for comparison only. If your encrypted string is not the same as the
encrypted string created by Visa Checkout, Visa Checkout rejects your request. When Visa
Checkout returns a signature in the response, you should create your own string with the same
fields separated by ampersands (&) where required, in the same order, and encrypt it for
comparison. If your encrypted string does not match the signature, you should not trust that the
response came from Visa Checkout.

Important
Because the examples use the shared secret, do not run it from a web page. Only execute the
sample from a protected server.

HMAC-SHA256 Hash Algorithm in PHP Example

The following PHP example shows how to create the x-pay-token header:

<?php

class XPayTokenGenerator {
/**
* X-PAY-TOKEN generator for version 2 (xv2:)
*
* @param sharedSecret
* @param resourcePath
* Example: payment/info/{callId}
* @param queryString
* Example: apiKey=ABCD....XYZ
* @param requestBody
* Example:

{"orderInfo":{"currencyCode":"USD","eventType":"Confirm","orderId"
:"testorderID","subtotal":"80.1","total":"101"}}

* @return
*/
public function generateXPayTokenV2($sharedSecret, $resourcePath

, $queryString, $requestBody) {
$timestamp = time();

$beforeHash =
$timestamp.$resourcePath.$queryString.$requestBody;

B-2 January 23, 2019

HMAC-SHA256–Bit Hashing Visa Checkout

$xPayToken = "xv2:".$timestamp.":".hash_hmac('sha256', $beforeHash
, $sharedSecret);

return $xPayToken;
}

}
?>

HMAC-SHA256 Hash Algorithm in Python Example

The following Python example shows how to create the x-pay-token header:

from calendar import timegm
from datetime import datetime
from hashlib import sha256
import hmac

def _get_x_pay_token(shared_secret, resource_path, query_string, body):
timestamp = str(timegm(datetime.utcnow().timetuple()))
pre_hash_string = timestamp + resource_path + query_string + body
hash_string = hmac.new(shared_secret,

msg=pre_hash_string,
digestmod=sha256).hexdigest()

return 'xv2:' + timestamp + ':' + hash_string

HMAC-SHA256 Hash Algorithm in Java Example

The following Ruby example shows how to create the x-pay-token header:

import java.math.BigInteger;
import javax.crypto.Mac;
import javax.crypto.spec.SecretKeySpec;
import java.nio.charset.StandardCharsets;
import java.security.SignatureException;

public static String generateXpaytoken(String resourcePath, String queryString
, String requestBody, String sharedSecret) throws SignatureException {
String timestamp = timeStamp();
String beforeHash = timestamp + resourcePath + queryString + requestBody;
String hash = hmacSha256Digest(beforeHash, sharedSecret);
String token = "xv2:" + timestamp + ":" + hash;
return token;

}

private static String timeStamp() {
return String.valueOf(System.currentTimeMillis()/ 1000L);

}
private static String hmacSha256Digest(String data, String sharedSecret)

throws SignatureException {
return getDigest("HmacSHA256", sharedSecret, data, true);

}
private static String getDigest(String algorithm, String sharedSecret, String data

, boolean toLower) throws SignatureException {
try {

Mac sha256HMAC = Mac.getInstance(algorithm);

January 23, 2019 B-3

Visa Checkout HMAC-SHA256 Hash Algorithm in Ruby Example

SecretKeySpec secretKey = new SecretKeySpec(sharedSecret.getBytes
(StandardCharsets.UTF_8), algorithm);

sha256HMAC.init(secretKey);

byte[] hashByte = sha256HMAC.doFinal(data.getBytes(StandardCharsets.UTF_8));
String hashString = toHex(hashByte);

return toLower ? hashString.toLowerCase() : hashString;
} catch (Exception e) {

throw new SignatureException(e);
}

}

private static String toHex(byte[] bytes) {
BigInteger bi = new BigInteger(1, bytes);
return String.format("%0" + (bytes.length << 1) + "X", bi);

}

HMAC-SHA256 Hash Algorithm in Ruby Example

The following Ruby example shows how to create the x-pay-token header:

def get_xpay_token(shared_secret, resource_path, query_string, request_body)
require 'digest'
timestamp = Time.now.getutc.to_i.to_s
hash_input = timestamp + resource_path + query_string + request_body
hash_output = OpenSSL::HMAC.hexdigest(OpenSSL::Digest.new('sha256')

, shared_secret, hash_input)
return "xv2:" + timestamp + ":" + hash_output
end

HMAC-SHA256 Hash Algorithm in C# Example

The following C# example shows how to create the x-pay-token header:

private static string getTimestamp() {
long timeStamp = ((long) DateTime.UtcNow.Subtract(new DateTime(1970

, 1, 1, 0, 0, 0, DateTimeKind.Utc)).TotalMilliseconds) / 1000;
return timeStamp.ToString();

}

private static string getHash(string data) {
var hashString = new HMACSHA256(Encoding.ASCII.GetBytes(SHARED_SECRET));
var hashbytes = hashString.ComputeHash(Encoding.ASCII.GetBytes(data));
string digest = String.Empty;

foreach (byte b in hashbytes) {
digest += b.ToString("x2");

}

return digest;
}

private static string getXPayToken(string resourcePath, string queryString
, string requestBody) {

B-4 January 23, 2019

HMAC-SHA256–Bit Hashing Visa Checkout

string timestamp = getTimestamp();
string sourceString = timestamp + resourcePath + queryString + requestBody;
string hash = getHash(sourceString);
string token = "xv2:" + timestamp + ":" + hash;
return token;

}

January 23, 2019 C-1

Clickjacking Prevention C
Clickjacking Prevention Steps

To prevent clickjacking of your pages, each page must contain JavaScript to verify that there
are no transparent layers, such as might be the case if your page was loaded as an iFrame of a
page containing malicious code, and that only your site can load your pages.

Related Content
Checking for Hidden Layers

Using the X-Options Header

Testing Your Clickjacking Prevention Implementation

Checking for Hidden Layers

Pages that prevent clickjacking contain JavaScript, such as the following, to verify that there are
no transparent layers in which malicious code could reside:

<head>
...
<style id=”antiClickjack”>body{display:none;}</style>
<script type=”text/javascript”>
if (self === top) {
var antiClickjack = document.getElementById(“antiClickjack”);
antiClickjack.parentNode.removeChild(antiClickjack);
} else {
top.location = self.location;
}
</script>
...
</head>

Related Content
Clickjacking Prevention Steps (Parent Topic)

Using the X-Options Header

Messages directed at your pages must include an X-FRAME-OPTIONS header to verify that
the response is known to be from your web application:

• X-FRAME-OPTIONS DENY prevents anything from framing your page.
• X-FRAME-OPTIONS SAMEORIGIN prevents anything except your application from framing

your page.

In addition, you should use the frame-ancestors directive in a Content-Security-Policy HTTP
response header to indicate whether or not a browser should be allowed to render a page in a
frame or iframe. If supported by the consumer’s browser, sites can also use this directive to
avoid clickjacking attacks by ensuring that their content is not embedded into other sites.

Related Content
Clickjacking Prevention Steps (Parent Topic)

C-2 January 23, 2019

Clickjacking Prevention Visa Checkout

Testing Your Clickjacking Prevention Implementation

To test your implementation of anti-clickjacking measures:

Note
These steps assume your site is not already in an iFrame.

1. Install or use a test server that is not being used for your production or sandbox site and
does not contain the pages that you want to test. For example, you can test using Tomcat
on localhost:8080.

2. Create a page on your test server that loads the page containing the Visa Checkout button
in an iFrame.

<html>
<body>
<iframe src="https://www.yoursite.com/..." width=100% height=100%>
<p>Your browser does not support iframes.</p>

</iframe>
</body>
</html>

3. Test the page you created to load your actual page in an iFrame.

As a best practice, you should automate these steps so that you automatically run a script to
test your clickjacking prevention measures whenever you change or add a page to your site.

Related Content
Clickjacking Prevention Steps (Parent Topic)

Example Server-Side Clickjacking Prevention
Implementation
The following example shows how to implement X-FRAME-OPTIONS DENY or X-FRAME-
OPTIONS SAMEORIGIN headers in a Java servlet for pages served by Tomcat:

Related Content
Java Servlet

Tomcat Configuration

Java Servlet

The following sample implements a servlet to provide an X-Frame-Options and Content-
Security-Policy frame-ancestors header as a filter:

package com.testvco.filter;
import java.io.IOException;
import javax.servlet.Filter;
import javax.servlet.FilterChain;
import javax.servlet.FilterConfig;
import javax.servlet.ServletException;
import javax.servlet.ServletRequest;
import javax.servlet.ServletResponse;
import javax.servlet.http.HttpServletResponse;

January 23, 2019 C-3

Visa Checkout Tomcat Configuration

public class ClickjackFilter implements Filter{
private String xFrameOptions = "DENY";
private String frameAncestors = "frame-ancestors '_VALUE_'";

@Override
public void destroy() {
}

@Override
public void doFilter(ServletRequest request, ServletResponse response,

FilterChain chain) throws IOException, ServletException {
HttpServletResponse res = (HttpServletResponse)response;
res.addHeader("X-Frame-Options", xFrameOptions);
res.addHeader("Content-Security-Policy", frameAncestors);
chain.doFilter(request, response);

}

@Override
public void init(FilterConfig filterConfig) throws ServletException {
String xFrameOptions = filterConfig.getInitParameter("xFrameOptions");
String frameAncestors=filterConfig.getInitParameter("frameAncestors");

if (xFrameOptions != null) {
this.xFrameOptions = xFrameOptions;
}
if (frameAncestors != null) {
this.frameAncestors
= this.frameAncestors.replace("_VALUE_", frameAncestors);

}else{
this.frameAncestors
= this.frameAncestors.replace("_VALUE_", "none");

}
}
}

Related Content
Example Server-Side Clickjacking Prevention Implementation (Parent Topic)

Tomcat Configuration

Add the filter definition and mapping to your web application's web.xml file. Set up the
mapping so that it applies to any page that hosts the Visa Checkout button:

<?xml version=”1.0” encoding=”UTF-8”?>
<web-app ...>
...
<!-- Clickjack prevention -->
<!-- Use 'DENY' or 'SAMEORIGIN' or 'ALLOW-FROM http....' -->
<!-- for xFrameOptions param -->
<!-- Use 'none' or 'self' or 'http...' for frameAncestors param -->
<!-- for frameAncestors param -->
<filter>
<filter-name>ClickjackFilter </filter-name>
<filter-class>com.testvco.filter.ClickjackFilter </filter-class>
<init-param>
<param-name>xFrameOptions </param-name>
<param-value>DENY </param-value> <!-- Change as needed -->

</init-param>

C-4 January 23, 2019

Clickjacking Prevention Visa Checkout

<init-param>
<param-name>frameAncestors </param-name>
<param-value>none </param-value> <!-- Change as needed -->
</init-param>

</filter>
<filter-mapping>
<filter-name>ClickjackFilter </filter-name>
<url-pattern>/* </url-pattern>

</filter-mapping>
...
</web-app>

Related Content
Example Server-Side Clickjacking Prevention Implementation (Parent Topic)

January 23, 2019 D-1

AVS and CVV Responses D
AVS Codes
AVS codes can be returned by Visa Checkout in the avsResponseCode response field.

AVS Code Description

0 Unavailable. AVS is not available due to a timeout or other
system reason.

Note
Although AVS is verified when a card is added to the Visa
Checkout account, verification information may not
always be available in the consumer information payload;
in which case, 0 is returned.

1 Not supported: AVS is not supported for this processor or
card type.

2 Unrecognized: the processor returned an unrecognized
value for the AVS response.

A Partial match: street address matches, but 5-digit and 9-
digit postal codes do not match.

B Partial match: street address matches, but postal code is
not verified. Returned only for non U.S.-issued Visa cards.

C No match: street address and postal code do not match.
Returned only for non U.S.-issued Visa cards.

D Match: street address and postal code match. Returned
only for non U.S.-issued Visa cards.

E Invalid: AVS data is invalid or AVS is not allowed for this
card type.

F Partial match: card member’s name does not match, but
billing postal code matches. Returned only for the
American Express card type.

G Not supported: non-U.S. issuing bank does not support
AVS.

H Partial match: card member’s name does not match, but
street address and postal code match. Returned only for
the American Express card type.

D-2 January 23, 2019

AVS and CVV Responses Visa Checkout

AVS Code Description

I No match: address not verified. Returned only for non U.S.-
issued Visa cards.

J Match: card member’s name, billing address, and postal
code match. Shipping information verified and chargeback
protection guaranteed through the Fraud Protection
Program. Returned only if you are signed up to use AAV+
with the American Express Phoenix processor.

K Partial match: card member’s name matches, but billing
address and billing postal code do not match. Returned
only for the American Express card type.

L Partial match: card member’s name and billing postal code
match, but billing address does not match. Returned only
for the American Express card type.

M Match: street address and postal code match. Returned
only for non U.S.-issued Visa cards.

N No match: one of the following: Street address and postal
code do not match. Card member’s name, street address,
and postal code do not match. Returned only for the
American Express card type

O Partial match: card member’s name and billing address
match, but billing postal code does not match. Returned
only for the American Express card type.

P Partial match: postal code matches, but street address not
verified. Returned only for non U.S.-issued Visa cards.

Q Match: card member’s name, billing address, and postal
code match. Shipping information verified but chargeback
protection not guaranteed (Standard program). Returned
only if you are signed up to use AAV+ with the American
Express Phoenix processor.

R System unavailable.

S Not supported: U.S.-issuing bank does not support AVS.

T Partial match: card member’s name does not match, but
street address matches. Returned only for the American
Express card type.

U System unavailable: address information unavailable for
one of these reasons: The U.S. bank does not support non-
U.S. AVS. Or The AVS in a U.S. bank is not functioning
properly.

January 23, 2019 D-3

Visa Checkout CVV Codes

AVS Code Description

V Match: card member’s name, billing address, and billing
postal code match. Returned only for the American Express
card type.

W Partial match: street address does not match, but 9-digit
postal code matches.

X Match: street address and 9-digit postal code match.

Y Match: street address and 5-digit postal code match.

Z Partial match: street address does not match, but 5-digit
postal code matches.

CVV Codes
CVV codes can be returned by Visa Checkout in the cvvResponseCode response field.

CVV Code Description

0 Unavailable. CVV is not available due to a timeout or other
system reason.

Note
Although the card security code, e.g. CVV2, is verified
when a card is added to the Visa Checkout account,
verification information may not always be available in
the consumer information payload; in which case, 0 is
returned.

1 Card verification is not supported for this processor or card
type.

2 An unrecognized result code was returned by the processor
for the card verification response.

3 No result code was returned by the processor.

M The CVN matched.

P The CVN was not processed by the processor for an
unspecified reason.

S The CVN is on the card but was not included in the request.

D-4 January 23, 2019

AVS and CVV Responses Visa Checkout

CVV Code Description

U Card verification is not supported by the issuing bank.

X Card verification is not supported by the card association.

January 23, 2019 E-1

Branding Requirements E
Visa Checkout Buttons
You can place the following Visa Checkout buttons on your web page.

Assets: Visa Checkout Buttons

Button Description

Standard button without card art

Neutral button without card art

Button with card art

Visa Checkout Dynamic Acceptance Marks
You can use the Visa Checkout dynamic acceptance marks to let consumers know that you
accept Visa Checkout on your pages. However, not all sizes and colors of acceptance marks can
be dynamic. The dynamic acceptance marks include versions blue 01, blue 02, white 01, and
white 02 in sizes 99x34, 49x31, and 40x30. Size 28x21 acceptance marks and disabled dynamic
marks cannot be dynamic. You can choose the style, color, and size based on the needs of your
site. However, you must link to the dynamic acceptance mark.

Note
Do not create your own dynamic acceptance marks. You can only use them if you link to the
associated URL, which Visa Checkout provides.

The base URL is https://assets.secure.checkout.visa.com/VCO/images/. It is followed by the .
png graphic; for example, acc_99x34_wht01.png. The complete URL is https://assets.secure.
checkout.visa.com/VCO/images/.png.

The following tables list all available Visa Checkout acceptance marks when enabled and
disabled.

Assets: Visa Checkout Dynamic Acceptance Marks When Enabled

The following table lists all available dynamic acceptance marks.

White on Blue Blue Blue on Neutral White

E-2 January 23, 2019

Branding Requirements Visa Checkout

Assets: Visa Checkout Dynamic Acceptance Marks When Disabled

The following table lists available disabled acceptance marks.

Disabled with background Disabled without background

January 23, 2019

Visa Checkout Revision History

Revision History
• Version 2.0, April 29, 2014
• Version 2.1, June 10, 2014
• Version 2.2, July 8, 2014
• Version 2.3, August 5, 2014
• Version 2.4, September 2, 2014
• Version 2.5, October 7, 2014
• Version 2.6, November 11, 2014
• Version 2.7, January 27, 2015
• Version 2.8, March 31, 2015
• Version 2.9, April 28, 2015
• Version 3.0, May 29, 2015
• Version 3.1, June 30, 2015
• Version 3.2, July 28, 2015
• Version 3.3, August 25, 2015
• Version 3.4, September 29, 2015
• Version 3.5, October 27, 2015
• Version 3.6, January 26, 2016
• Version 3.8, March 22, 2016
• Version 3.9, April 19, 2016
• Version 4.1, June 21, 2016
• Version 4.2, July 19, 2016
• Version 4.3, August 30, 2016
• Version 4.4, September 20, 2016
• Version 4.5, October 25, 2016
• Version 4.6, January 24, 2017
• Version 4.7, February 28, 2017
• Version 5.0, May 2, 2017
• Version 5.1, May 24, 2017
• Version 5.2, June 28, 2017
• Version 5.3, July 26, 2017
• Version 5.4, August 23, 2017
• Version 5.5, September 27, 2017
• Version 5.6, November 1, 2017
• Version 5.7, December 7, 2017
• Version 5.8, January 24, 2018

January 23, 2019

Branding Requirements Visa Checkout

• Version 6.0, March 28, 2018
• Version 6.4, July 25, 2018
• Version 6.5, August 22, 2018
• Version 6.6, September 26, 2018
• Version 6.7, October 31, 2018
• Version 19.01, January 23, 2019

	Visa Checkout
	Contents
	Preface
	What’s New in this Version

	1 Integration Overview
	Visa Checkout Integration Overview
	About the Visa Checkout Button and Lightbox
	Default Checkout Flow
	Recommended Browser Versions
	Guidelines for Rendering Buttons
	Z-Index Stacking

	Visa Checkout Display Language and Locale Selection
	Language Selection Algorithm

	Displaying the Total Amount for a Pay Button in the Lightbox
	Examples

	Market Requirements
	Payment Partner Reporting Requirements
	About Tokenized Payment Instruments
	User Experience and Error Handling for Tokens
	Tokenized Card on File and Multiple Authorization Considerations

	Consumer Information Payload
	Token Available—tokenInfo Structure Returned in Payload
	Account Number (PAN) Available—No tokenInfo Structure Returned in Payload

	Integration Steps
	Integration Options
	Responding to Payment Events
	Updating Payment Information in Visa Checkout
	Visa Checkout API Summary

	Card-on-File Transactions
	Automatic Updates to Card-on File in Visa Account Updater

	About Visa Checkout Profiles
	User Interface Redress Prevention
	Visa’s Accessibility Support
	Fraud and Risk
	Fraud Checks
	Declines
	Card Security Code Usage
	Verified by Visa (3–D Secure) Transactions
	Enabling Strong Authentication on First Use of a Card

	2 Visa Checkout Assets and Placements
	General Visa Checkout Button Placement and Flow Requirements

	3 Visa Checkout JavaScript and Button
	JavaScript Library — sdk.js
	Example: JavaScript Library — sdk.js

	Image Class v-button
	v-button Parameters
	Example: Rendering a Visa Checkout Button

	Tell Me More Link
	Example: Tell Me More Link

	Defining onVisaCheckoutReady Function
	Defining V.init Event Handler
	Merchant Example
	Partner Hosted Merchant Example
	Payment Request Properties
	Payment Request Configuration Example

	Settings Properties
	Lightbox Panel Configuration Example
	Shipping Properties
	Shipping Options Configuration Example

	Review Properties
	Review Options Configuration Example

	Payment Properties
	Payment Options Configuration Example

	Verified by Visa Setup Properties
	Deactivate Verified by Visa for a Transaction Example
	Suppress Verified by Visa Consumer Prompt Example

	Response to Payment Success Events
	Response Status
	Partial Shipping Address

	Response to Payment Cancelled Events
	Response to Error Events
	Example: Error Event Response

	User Data Prefill Event Handler
	Complete Visa Checkout Web Page HTML Example
	Preselected Checkout Feature

	4 Mobile App Support
	Summary of Mobile App Options
	Mobile App Examples
	iOS Web View Hybrid App
	Android Web View Hybrid App
	Optimizing the Checkout Flow for Mobile Browsers

	Enabling Third-Party Cookies for Hybrid Apps
	Accepting Cookies in iOS Hybrid Apps
	Accepting Cookies in Android Hybrid Apps

	5 Consumer Information
	About Consumer Information
	Consumer Information
	Payment Request
	User Data
	Payment Instrument Properties
	Token Info Properties
	Cryptogram Info Properties
	Payment Type Properties
	Card Art
	Expiration Date

	Address
	Risk Properties
	3–D Secure Authentication Data Fields
	Wallet Info
	Partial Shipping Address

	6 Get Payment Data
	Get Payment Data Summary
	Get Payment Data Request
	Path and Endpoints
	Method
	Required Headers
	Query Parameters

	Get Payment Data Response
	Full Payment Information Before Decryption
	Partial Shipping Address

	Get Payment Data Error Response
	Response Status
	Example

	Get Payment Data Errors
	Get Payment Data Examples
	Get Summary Payment Data Success Example—Merchant
	JSON Request Including Headers
	JSON Response—Account Number-Based Summary Payment Instrument
	JSON Response—Token-Enabled Summary Payment Instrument

	XML Request Including Headers
	XML Response—Account Number-Based Summary Payment Instrument
	XML Response—Token-Enabled Summary Payment Instrument

	Get Summary Payment Data Success Example—Partner
	JSON Request Including Headers
	JSON Response—Account Number-Based Summary Payment Instrument
	JSON Response—Token-Enabled Summary Payment Instrument

	XML Request Including Headers
	XML Response—Account Number-Based Summary Payment Instrument
	XML Response—Token-Enabled Summary Payment Instrument

	Get Full Payment Data Success Example
	JSON Request Including Headers
	JSON Response—Account Number-Based Full Payment Instrument
	JSON Response—Token-Enabled Full Payment Instrument

	XML Request Including Headers
	XML Response—Account Number-Based Full Payment Instrument
	XML Response—Token-Enabled Full Payment Instrument

	Get Payment Data Error Response

	7 Update Payment Info
	Update Payment Info Summary
	Event Types
	Card on File Events
	Promotions

	Update Payment Info Request
	Path and Endpoints
	Method
	Required Headers
	Query Parameters
	Update Payment Info Request Parameters
	Multiple Info Properties
	Order Info Properties
	Pay Info Properties

	Update Payment Info Errors
	Update Payment Info Examples
	Update Multiple Info Structure Examples
	JSON Request Body
	JSON Response
	XML Request
	XML Response

	Order Update Success Example
	JSON Request Including Headers
	JSON Request Body
	JSON Response
	XML Request Including Headers
	XML Request Body
	XML Response

	Payment Update Success Example
	JSON Request Including Headers
	JSON Request Body
	JSON Response
	XML Request Including Headers
	XML Request Body
	XML Response

	Update Payment Info Error Examples
	JSON Update Payment Info Error Example
	XML Update Payment Info Error Example

	8 Update Payment Info Pixel Image
	Update Payment Info Pixel Image Summary
	Card on File Events
	Promotions

	Update Payment Info Pixel Image Request
	Path and Endpoints
	Update Payment Info Pixel Image Request Parameters

	Update Payment Info Pixel Image Response
	Update Payment Data Info Pixel Image Error Messages
	Update Payment Info Request Inside an Image Tag
	Update Payment Info Request
	Update Payment Info Error Response

	A Decrypting Consumer Information
	Decrypting Consumer Information Introduction
	Consumer Information Decryption Algorithm
	Consumer Information Decryption Examples
	Java Decryption Example
	C# Decryption Example
	Node.js Decryption Example
	PHP Decryption Example
	Python Decryption Example
	Ruby Decryption Example

	B HMAC-SHA256–Bit Hashing
	About the HMAC-SHA256–Bit Hashing Algorithm
	HMAC-SHA256 Hash Algorithm in PHP Example
	HMAC-SHA256 Hash Algorithm in Python Example
	HMAC-SHA256 Hash Algorithm in Java Example
	HMAC-SHA256 Hash Algorithm in Ruby Example
	HMAC-SHA256 Hash Algorithm in C# Example

	C Clickjacking Prevention
	Clickjacking Prevention Steps
	Checking for Hidden Layers
	Using the X-Options Header
	Testing Your Clickjacking Prevention Implementation

	Example Server-Side Clickjacking Prevention Implementation
	Java Servlet
	Tomcat Configuration

	D AVS and CVV Responses
	AVS Codes
	CVV Codes

	E Branding Requirements
	Visa Checkout Buttons
	Visa Checkout Dynamic Acceptance Marks

	Revision History

